Installing pudb

Install PuDB using the command:

pip install pudb

If you are using Python 2.5, PuDB version 2013.5.1 is the last version to support that version of
Python. urwid 1.1.1 works with Python 2.5, newer versions do not.

Starting the debugger

To start debugging, simply insert:

from pudb import set_trace; set_trace()

A shorter alternative to this is:

import pudb; pu.db

Or, if pudb is already imported, just this will suffice:
pu.db

If you are using Python 3.7 or newer, you can add:

Set breakpoint() in Python to call pudb
export PYTHONBREAKPOINT="pudb.set_trace"

in your ~/ . bashrc. Then use:

breakpoint()

to start pudb.
Insert one of these snippets into the piece of code you want to debug, or run the entire script with:

python -m pudb my-script.py

which is useful if you want to run PuDB in a version of Python other than the one you most recently
installed PuDB with.

Using the debugger

Use arrows on your keyboards to navigate through the debugger layout.
* Use up- and down-arrow to move to different lines in a window.

* Use left- and right-arrow to focus on different panes.

n:next tep into b:breakpoint python command line

Variables:
self: Network
sizes:iisti(3)

import numpy as np
import pudb

class Network(object):

def __init_ (s
tEiThe LisT ' contains the number of neurons in the
respective layers of the network. For example, if the list
was [2, 3, 1] then it would be a three-layer network, with the
first layer containing 2 neurons, the second layer 3 neurons,
and the third layer 1 neuron. The biases and weights for the
network are initialized randomly, using a Gaussian
distribution with mean @, and variance 1. Note that the first
layer is assumed to be an input layer, and by convention we
won't set any biases for those neurons, since biases are only
ever used in computing the outputs from later layers.""

pu.db
self.num_layers = len(sizes)
self.sizes = sizes
self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
f.weights = [np.random.randn(y, x)
for x, y in zip(sizes[:-1], sizes[1:])] Stack:
.k > __init__ [Network] n
<module> y:32
feedforward(self, a):
"""Return the output of the network if ‘‘a’’ is input."""
for b, w in zip(self.biases, s .weights):
a = sigmoid(np.dot(w, a)+b)
return a

SGD(self, training_data, epochs, mini_batch_size, eta,
test_data=None):

"""Train the neural network using mini-batch stochastic

gradient descent. The '‘training_data'‘ is a list of tuples

o T DO i EEE) ST St A sl

outputs. The other non-optional parameters are mosaic.py:311 (@ hits)

self-explanatory. If '‘test_data ' is provided then the mosaic. 64 (0 hits)

network will be evaluated against the test data after each

epoch, and partial progress printed out. This is useful for

tracking progress, but slows things down substantially."""

Press “Ctrl-X” to bring up/close/set focus to pudb console that can execute python code:

PuDB 2022.1.2 - ?:help tep into b:breakpoint ython command line
#S lard library
import random : Network
sizes: list (3)
hird-party librarie
import numpy as np
import pudb

class Network(object):

def __init_ (self, sizes):
"""The list "‘sizes'' contains the number of neurons in the
respective layers of the network. For example, if the list
was [2, 3, 1] then it would be a three-layer network, with the
first layer containing 2 neurons, the second layer 3 neurons,
and the third layer 1 neuron. The biases and weights for the
network are initialized randomly, using a Gaussian
distribution with mean @, and variance 1. Note that the first
layer is assumed to be an input layer, and by convention we
won't set any biases for those neurons, since biases are only
ever used in computing the outputs from later layers."""

pu.db
Lf.num_layers = len(sizes)
self.sizes = sizes
self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
self.weights = [np.random.randn(y, x)
fior x, 8y in zip(sizes[:=11,Fsizes|1:1)]
import pudb; pu.db
<module>
feedforward(self, a):
"""Return the output of the network if *‘a’" is input."""
for b, w in zip(self.biases, self.weights):
a = sigmoid(np.dot(w, a)+b)
return a

SGD(self, training_data, epochs, mini_batch_size, eta,
test_data=None):
"""Train the neural network using mini-batch stochastic
Command line: [Ctrl-X]
>>> print(self.num_layers) Breakpoints:
3 mosaic.py:311 (0 hits)
mosaic.py:464 (@ hits)

Press “n” on the “Variables” pane to set the value to be run-timely monitored.

PuDB 2022.1.2 - ?:help n:next s:step into b:breakpoint !:python command line
Standard library Variables:
import random elf: Network
list (3) [publ
Third-party librari [0]: 784
import numpy as np | [1]: 30

import pudb
Add Watch Expression

Network(obje]

Watch expression: HSRPLILMCIIE]
5|

< Cancel

f feedforwary
"Return

SGD(self,
test_d|
"""Train t
Command line: [Ctrl-X]

< Clear

Press “T” to run until a target line is hit.

lPuDB 2022.1.2 - ?:help n:next :step into b:breakpoint !:python command line
f.biases [np.random.randn(y, 1) for y in sizes[1:]] Variables:
.weights [np.random. randn(y, x)
for x, y in zip(sizes[:-11, sizes[1:1)]
import pudb; pu.db

f feedforward(f, a):
"""Return the output of the n work if a input."""
for b, w in zip(self.biases, self.weights):
a = sigmoid(np.dot(w, a)+b)
return a

f SGD(self, training_data, epochs, mini_batch_size, eta,

test_data=None):
L network using mini-batch st stic
The *‘training_data'' is a list of tupl
nting the training inputs and the desir
r non-optional p a
If "“test_data s ded then the
luated agains after each

, and partial

tracking progress, but slows things d

training_data = list(training_data)
i t pudb; pu.dt
len(training_data)

if test_data:
test_data = list(test_data) \
n_test = len(test_data) <module> te

for j in range(epochs):
random.shuffle(training_data)
mini_batches = [
training_data[k:k+mini_batch_size]
for k in range(0, n, mini_batch_size)]
for mini_batch in mini_batches:
self.update_mini_batch(mini_batch, eta)

Press “S” to start step-debugging (go “inside” to a function).
Press “D” to travel down the stack (go to the callee). Press “U” to travel up the stack (go to the caller).

You can always monitor where you are in a program by watching the “Stack” window.

<listcomp> 1
update_min
>> SGD [Net

<module> t 7 Press D <module> t

I

Press “B” to set breakpoint of a line (you can see the lines with breakpoint activated with a red *. You
can also monitor all breakpoints in the Breakpoints window). Then press “C” to continue program
execution until the breakpoint.

PuDB 2022.1.2 - ?:help n:next s:step into b:breakpoint !:python command line
mini_batches = [Variable:
training_data[k:k+mini_batch_size]
for k in range(@, n, mini_batch_size)]
for mini_batch in mini_batches:
elf.update_mini_batch(mini_batch, eta) mini_bat list (10)
if test_data: st (2)
}".format(j,self.evaluate(test_data),n_test)) list (2)
else: Network
print("Epoch {} complete".format(j)) array(float32) (784, 1)
ndarray(float64) (10, 1)

def update_min el mini_batch, et

ros(b.shape) for b in f.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
for x, y in mini_batch:
delta_nabla_b, delta_nabla_w = self.backprop(x, y)
nabla_b = [nb + dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
nabla_w = [nw + dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]

self.weights = [w -(eta/len(mini_batch))*nw
for w, nw in zip(f.weights, nabla_w)]
pu.dt
elf.biases = [b - (eta/len(mini_batch))*nb
for b, nb in zip(self.biases, nabla_b)]
> update_min
SGD [Net
the <module>

nabla_w = [np.zeros(w.shape) for w in
feedforward

activation = x

activations = [x] # Ui t

2s = [1 # re all th

for b, w in zip(self.biases, se
z = np.dot(w, activation)+b
zs.append(z) s
activation = sigmoid(z) > network.py:94 (1 hit)
activations.append(activation)

backward pass

delta = .cost_derivative(activations[-1], y) * \

.weights):

Profiling python code

Python includes a profiler called cProfile. It not only gives the total running time, but also times each
function separately, and tells you how many times each function was called, making it easy to
determine where you should make optimizations.

python -m cProfile -o test.py.profile test.py
Then you can visualize the results with snakeviz:
* Install snakeviz: pip install snakeviz

* Visualizing the profiling results: snakeviz test.py.profile

https://docs.python.org/3/library/profile.html#module-cProfile

test.py:1(<module>)
9.52s

network.py:51(SGD)
8655

network.py:100(backprop)
6505

network.py:154(sigmoid_prime)
134s

etwork.py:150(sigmoid)
157s

Or you can do the visualization with py-spy:
* Install py-spy: pip install py-spy
* Profiling and visulizing: py-spy record -o profile.svg -- python test.py

* The profiling results will be saved to profile.svg.

py-spy record -o profile.svg -- python test.py

backprop (network.py:132) <listcomp> (networ.. <.
Imcs;_amy /_function_ inter..

‘backpro... | ECKBNORNNSNGN EGKGMR b>ckorop b [backprop.. b,
i . Root(<_ar. SgmOG(.. [SGMOKEDE | Somoid.

S

	Installing pudb
	Starting the debugger

