
Installing pudb
Install PuDB using the command:

pip install pudb

If you are using Python 2.5, PuDB version 2013.5.1 is the last version to support that version of
Python. urwid 1.1.1 works with Python 2.5, newer versions do not.

Starting the debugger
To start debugging, simply insert:

from pudb import set_trace; set_trace()

A shorter alternative to this is:

import pudb; pu.db

Or, if pudb is already imported, just this will suffice:

pu.db

If you are using Python 3.7 or newer, you can add:

Set breakpoint() in Python to call pudb
export PYTHONBREAKPOINT="pudb.set_trace"

in your ~/.bashrc. Then use:

breakpoint()

to start pudb.

Insert one of these snippets into the piece of code you want to debug, or run the entire script with:

python -m pudb my-script.py

which is useful if you want to run PuDB in a version of Python other than the one you most recently
installed PuDB with.

Using the debugger
Use arrows on your keyboards to navigate through the debugger layout.

• Use up- and down-arrow to move to different lines in a window.

• Use left- and right-arrow to focus on different panes.

Press “Ctrl-X” to bring up/close/set focus to pudb console that can execute python code:

Press “n” on the “Variables” pane to set the value to be run-timely monitored.

Press “T” to run until a target line is hit.

Press “S” to start step-debugging (go “inside” to a function).

Press “D” to travel down the stack (go to the callee). Press “U” to travel up the stack (go to the caller).

You can always monitor where you are in a program by watching the “Stack” window.

Press “B” to set breakpoint of a line (you can see the lines with breakpoint activated with a red *. You
can also monitor all breakpoints in the Breakpoints window). Then press “C” to continue program
execution until the breakpoint.

Profiling python code
Python includes a profiler called cProfile. It not only gives the total running time, but also times each
function separately, and tells you how many times each function was called, making it easy to
determine where you should make optimizations.

python -m cProfile -o test.py.profile test.py

Then you can visualize the results with snakeviz:

• Install snakeviz: pip install snakeviz

• Visualizing the profiling results: snakeviz test.py.profile

Press D

https://docs.python.org/3/library/profile.html#module-cProfile

Or you can do the visualization with py-spy:

• Install py-spy: pip install py-spy

• Profiling and visulizing: py-spy record -o profile.svg -- python test.py

• The profiling results will be saved to profile.svg.

	Installing pudb
	Starting the debugger

