This tutorial describes the steps to create a hardware platform for the MiniZed board which only
uses the processing system (PS), and simple application examples which blink an LED and
communicate with a connected system (such as the lab computers or your PC) via the UART
port (and in turn the USB port).

You are recommended to keep the following documents handy while working with the MiniZed
platform and Zynq system:

[1] https://www.avnet.com/wps/wcm/connect/onesite/1945b4c1-4e40-46dd-92¢1-
46329304e185/MiniZed-HW-UG-v1-0-
V1_0.pdf?MOD=AJPERES&attachment=false&id=1573009082950

Be careful of the auto inserted blanks in the above URL when you copy then into a web
browser.

[2] https://www.xilinx.com/support/documentation/user_guides/ug585-Zynqg-7000-TRM.pdf

[2] is a big document (1843 pages), but it is a reference document, and should be the first
document to check before starting to use a peripheral. For example, a big source of confusion
when first starting to work with the PL is, that it does not work by default unlike the PS. Section
“2.4 PS-PL Voltage Level Shifter Enables” describes why this is so, and how to make it

work.

A Quick Tutorial Application for PS
1. Start Vivado and choose Create Project. Enter project name, location etc. and click Next.
2. Choose RTL project, and make sure the box “Do not specify sources at this time” is
selected.
3. Inthe next page, select the Boards tab, choose MiniZed, and finish the creation.

New Project oo

Default Part
Choose a default Xilinx part or board for your project. ’

Parts | Boards

Reset All Filters

Vendor: | All v | Name: All v | Board Rewv: | Latest v
Search: Q v
Display Name Preview Vendor File Version Part

MiniZed
em.avnet.com 1.2 xc7z007sclg2z

ZedBoard Zynq Evaluation and Development Kit

“dd Daughter Card Connections em.avnet.com 1.4 xc7z020clg48¢
ZYNQ-7 ZC702 Evaluation Board - — .

Add Daughter Card Connections '.'fm := xilink.com 1.4 %c72020clg48¢
< >

@

4. Click “Create Block Design” on the left-hand side, or under the “Flow” menu, and choose
default options.

v |IP INTEGRATOR
Create Block Design

o

Click “Open Block Design”. There should be an empty diagram on the GUI.
6. Click the Add IP button (+ button) on the diagram, and choose ZYNQ7 Processing
System.

gram ? 00 X

P »
A oma O

Search: zZyng

ZYNQ7 Processing System

7. Click on “Run Block Automation” which should have just popped-up. You can also right-
click the diagram and choose it. Use the defaults (“apply board preset” should be
selected) and click OK. This configures the processing system (PS) according to the
specifications of the board we have previously selected (MiniZed).

For example, if you double click the Zynq7 Processing System, under Peripheral /O
pins, you should see that UART1 is connected to pins 48-49, and UARTO to EMIO
(which connects to the PL side). A search for “48” at the user guide of MiniZed [1]
reveals that UART#1 is indeed connected to MIO pins 48-49.

Peripherals

>wsDO
>WwIsD1
> SPIO
> SPI1
>) UART O
> W UART 1
v 12C0
12C1
> CAN O
> CAN 1
TTCO
TTC1
SWDT
PJTAG
> TPIU

>) GPIO MIO

26 27 28 29

SPIO

UART1

12c1

CAN1

TTC1

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

SDO

mos
SPI1
UARTO UARTO UARTO
UART1 UART1
12Co 12co 12Co
12C1 12c1
CANO CANO CANO

CAN1 CAN1

SWDT

PITAG

47 48 49 50 51

UART1

12C1

CAN1

52 53

UART1

12c1

CAN1

SWDT

EMIO

EMIO

EMIO

EMIO

EMIO

EMIO

EMIO

EMIO

EMIO

EMIO

EMIO

EMIO

EMIO

EMIO

EMIO

EMIO

10.

Table 13 - Allocation of MIO pins
~ Funcon MIOPinNumber(s) TotalllO

QSPI 1-6 7
Feedback Clock 8
SDIO #1 (eMMC) 10-15 6
USB #0 28-39 13
Phy Reset 7
UART #1 48,49 2
Bi-filament LED 52,53 2
User pushbutton 0 1
Arduino Reset signal 9 1
Total: 32

Also note that the Bi-filament LED is connected to pins 52-53, which are automatically
configured in the block design (GPIO MIO pins 52-53) thanks to the block automation.

Right-click your design under Sources, and click “Create HDL Wrapper...”, and let
Vivado manage the wrapper.
BLOCK DESIGN - design_1 *

Sources x Design | Signals | Board ?2 00 Dia¢
Q=&+ B Q
v .. Design Sources (1)

desinn 1 (desian 1 hd)
s Constrain Source Node Properties...

v = Simulatiof = Open File
> = osim_1
> [Utility Sou

Create HDL Wrapper...

\fiaw Inctantiatinn Tamnlata

Since we only want to test basic functionality, we will not be using the FPGA (PL) side of
the SoC. So click “Generate Bitstream” to directly generate the BitStream for the
hardware platform (which only contains the Zyng PS block). This step might take a few
minutes. You do not need to open the implemented design, so you can press “Cancel”
when Vivado offers you to open it when the bitstream is generated.

Click File -> Export -> Export Hardware after the bitstream is generated. Make sure that
“Include bitstream” checkbox is selected.

File Edit Flow Tools Reports Window Layout View }
Project » ™ ’, & 2
I Add Sources... BLOCK DESIGN - design_1

Close Project

Sources x Design Sic

Save Block Design As... Qa = = +
v (.. Design Sources (1)

> @ design_1_wrap
> Constraints

Close Block Design

v [Simulation Sources (1

| Checkpoint N > = sim_1 (1)
> [Utility Sources
P »
Text Editor »

Hierarchv |P Sources
Export Export Hardware...

11. Click File -> Launch SDK. If you have used the default locations at the previous step and
included the bitstream, just press OK to launch the SDK where we will program the
ZYNQ PS.

12. In the SDK, notice the address map for the processor. We are interested in this example
to interact with the LEDs, which is connected to the PS GPIO, whose registers have a
base address of 0xe000a000 in this case.

¥ system.hdf &2
design_1 wrapper hw platform 0 Hardware Platform Specification

Design Information

Target FPGA Device: 7z007s
Part: xc7z007sclg225-1
Created with: Vivado 2018.3
Created On: Wed Mar 11 12:58:38 2020

Address Map for processor ps7_cortexa%9_0

Cell Base Addr High Addr Slave I/f Mem/Reg
ps7_intc_dist_0 | Oxf8f01000 | OxF8FO1FFF | | REGISTER
ps7_gpio_0 | 0xe000a000 | Oxe000afff | . REGISTER

13. In the SDK, click File -> New -> Application Project. Choose a project name, a project
language (in this case | will choose C++), and make sure that the design (for which we
exported the bitstream) is selected as the “Hardware Platform”. We want to run the
system bare-metal, so choose standalone as the OS platform. We also need a new

board support package, which will be created automatically at this step. Board support
package provides peripheral drivers and any other libraries which you can use in your
code. Choose Empty Application in the next page and then Finish.

New Project

Application Project L
Create a managed make application project. f /

Project name: |hello_world ‘

[Use default location

OS Platform: | standalone =

Target Hardware
Hardware Platform: | design_1_wrapper_hw_platform_0 > | [New...

Processor: ps7_cortexad_0 :

Target Software

Language:) C @ C++

Board Support Package: @ Create New |hello_world_bsp

@ Next > Cancel | Finish |

14. In the board support package, open “system.mss” if not already opened, and notice the
documentation and examples for ps7_gpio_0 driver, which we will use to toggle the LED.

ps7_gpio_0 gpiops Documentation Import Examples

If you open for example xgpiops_hw.h, you will see that the register offsets are
automatically defined for us, which you would need to look-up from the datasheet of the device
otherwise. Similarly “../ps7_cortexa9_0/include/xparameters.h” under BSP defines many things
such as the address mapping, so you do not do these manually. Remember the address map
from system.hdf? These are defined for us automatically here!

/* Definitions for driver GPIOPS */
#define XPAR XGPIOPS NUM INSTANCES 1

/* Definitions for peripheral PS7 GPIO © */
#define XPAR PS7 GPIO 0 DEVICE ID ©

#define XPAR PS7 GPIO 0 BASEADDR OXE000A000
#define XPAR PS7 GPIO © HIGHADDR OxE@OOAFFF

Since no (sane) person has time to do everything from scratch, we will use one of the provided
examples to blink the LEDs, but you should know that you can find all the drivers inside the BSP
if needed.

iystem.hdFf (mh, system.mss ’ [% xgpiops_hw.h & ‘

JHFERRERERRRRRR LR R R X R InClude Files *¥¥¥¥¥¥kkdxdddkdiiddeXidtiirt¥x /

#include "xil types.h"
#include "xil assert.h"
#include "xil io.h"

[R R kX Constant Definitions *¥¥¥¥¥¥dxdxsksirsrsirsrsirsny /

/** @name Register offsets for the GPIO. Each register is 32 bits.

* e{

*/
#define XGPIOPS DATA LSW OFFSET 0x00000000U /* Mask and Data Register LSW, WO */
#define XGPIOPS DATA MSW OFFSET 0x00000004U /* Mask and Data Register MSW, WO */
#define XGPIOPS DATA OFFSET ©0x00000046U /* Data Register, RW */
#define XGPIOPS DATA RO OFFSET 0x00000060U /* Data Register - Input, RO */
#define XGPIOPS DIRM OFFSET 0x00000204U /* Direction Mode Register, RW */
#define XGPIOPS OUTEN OFFSET 0x00000208U /* Output Enable Register, RW */
#define XGPIOPS INTMASK OFFSET ©x0000020CU /* Interrupt Mask Register, RO */
#define XGPIOPS INTEN OFFSET 0x00000210U /* Interrupt Enable Register, WO */
#define XGPIOPS INTDIS OFFSET 0x00000214U /* Interrupt Disable Register, W0*/
#define XGPIOPS INTSTS OFFSET 0x00000218U /* Interrupt Status Register, RO */
#define XGPIOPS INTTYPE OFFSET 0x0000021CU /* Interrupt Type Register, RW */
#define XGPIOPS INTPOL OFFSET 0x00000220U /* Interrupt Polarity Register, RW */
#define XGPIOPS INTANY OFFSET 0x00000224U /* Interrupt On Any Register, RW */
/* @} */

15. Choose the simpler xgpiops_polled example after clicking “Import Examples” for
ps7_gpio_0 inside system.mss.

Examples for gpiops

Import Examples

Select the examples to be imported into workpsace. Double clic

v % xgpiops_polled_example

& = xgpiops_polled_example.c
» [& xgpiops_intr_example

16. Now copy everything inside the xgpiops_polled_example.c file into your main.cc file (or
simply use this application project). We need to set the pins for the LEDs though, since
the SDK does not automatically know about this.

Modify the code as shown below:

Input_Pin = @; // user pushbutton
Output_Pin = 52; // bi-filament LED pin 1 (we'll only blink one of them)

/* You can remove below commented block
* switch (Type of board) {
case XPLAT ZYNQ ULTRA MP:
Input Pin = 22;
OQutput Pin = 23;
break;

case XPLAT ZYNQ:
Input Pin = 14;
Qutput Pin = 10;
break;
}*/
Notice that we took this information from the MiniZed user manual (check step 7 of this
document).

17. To run the code on MiniZed, press the little downward arrow next to the play button, and
choose Run Configurations. Target Setup window should look something like as shown
below:

© Target Setup O] Application| ®: Arguments | B Environment | £ Symbol Files|

Debug Type: | Standalone Application Debug 2

Connection: | Local 2 | | New

Hardware Platform: | design_1_wrapper_hw_platform_0 3

Bitstream File: design_1_wrapper.bit Search... Browse... ¢
Initialization File: ps7_init.tcl Search... Browse...

FPGA Device: Auto Detect Select...

PS Device: Auto Detect Select...

. Summary of operations to be performed
[Reset entire system y P P

Following operations will be performed before launching the debugger.

& Program FPGA 1. Resets entire system. Clears the FPGA fabric (PL).
2. Program FPGA fabric (PL).
& Run ps7_init 3. Runs ps7_init to initialize PS.

) 4. Runs ps7_post_config. Enables level shifters from PL to PS. (Recommeg
& Runps7_post_config yse this option only after system reset or board power ON).
5. All processors in the system will be suspended, and Applications will B
downloaded to the following processors as specified in the Applications
1) ps7_cortexa9_0 (/home/zafer/project_1/project_1.sdk/hello_world
hello_world.elFf)

Revert Apply

Make sure that you can see the FPGA Device and the PS Device by clicking Select..., and
select the Application project that we have created in the Application tab. If everything went well,
you should see the LED blinking for the specified number of times.
18. If you want to communicate with the MiniZed, the easiest way to do so is via UART. For
this, you can load the UART example from ps7_uart_1 in system.mss, and play around
with it. Make sure that UART1 is used in the example, since this is the one that is

19.

actually connected on Minized, by using the definition
“XPAR_XUARTPS_1_DEVICE_ID”, and not “XPAR_XUARTPS_0_DEVICE_ID":
#define UART_DEVICE_ID XPAR_XUARTPS_1_DEVICE_ID

Also, you can select this UART port as the default stdout, so that you can directly print to
the output. If this is not working, click “Modify this BSP’s Settings” in system.mss, select
“standalone” under Overview, and choose ps7_uart_1 for both stdin and stdout, since
we are using these on the MiniZed. Now you can see textual output using a serial
communication program (a SDK terminal is also provided with Xilinx SDK).

GPIO Polled Mode Example Test
Data read from GPIO Input is 0x0
Successfully ran GPIO Polled Mode Example Test

If you want to use the other peripherals, Xilinx provides drivers (and examples for most)
of the peripherals, so they are a good starting point.

