
This tutorial describes the steps to create a hardware platform for the MiniZed board which only
uses the processing system (PS), and simple application examples which blink an LED and
communicate with a connected system (such as the lab computers or your PC) via the UART
port (and in turn the USB port).
You are recommended to keep the following documents handy while working with the MiniZed
platform and Zynq system:
[1] https://www.avnet.com/wps/wcm/connect/onesite/1945b4c1-4e40-46dd-92c1-
46329304e185/MiniZed-HW-UG-v1-0-
V1_0.pdf?MOD=AJPERES&attachment=false&id=1573009082950
Be careful of the auto inserted blanks in the above URL when you copy then into a web
browser.

[2] https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
[2] is a big document (1843 pages), but it is a reference document, and should be the first
document to check before starting to use a peripheral. For example, a big source of confusion
when first starting to work with the PL is, that it does not work by default unlike the PS. Section
“2.4 PS–PL Voltage Level Shifter Enables” describes why this is so, and how to make it
work.

A Quick Tutorial Application for PS

1. Start Vivado and choose Create Project. Enter project name, location etc. and click Next.
2. Choose RTL project, and make sure the box “Do not specify sources at this time” is

selected.
3. In the next page, select the Boards tab, choose MiniZed, and finish the creation.

4. Click “Create Block Design” on the left-hand side, or under the “Flow” menu, and choose

default options.

5. Click “Open Block Design”. There should be an empty diagram on the GUI.
6. Click the Add IP button (+ button) on the diagram, and choose ZYNQ7 Processing

System.

7. Click on “Run Block Automation” which should have just popped-up. You can also right-
click the diagram and choose it. Use the defaults (“apply board preset” should be
selected) and click OK. This configures the processing system (PS) according to the
specifications of the board we have previously selected (MiniZed).

For example, if you double click the Zynq7 Processing System, under Peripheral I/O
pins, you should see that UART1 is connected to pins 48-49, and UART0 to EMIO
(which connects to the PL side). A search for “48” at the user guide of MiniZed [1]
reveals that UART#1 is indeed connected to MIO pins 48-49.

Also note that the Bi-filament LED is connected to pins 52-53, which are automatically
configured in the block design (GPIO MIO pins 52-53) thanks to the block automation.

8. Right-click your design under Sources, and click “Create HDL Wrapper...”, and let
Vivado manage the wrapper.

9. Since we only want to test basic functionality, we will not be using the FPGA (PL) side of
the SoC. So click “Generate Bitstream” to directly generate the BitStream for the
hardware platform (which only contains the Zynq PS block). This step might take a few
minutes. You do not need to open the implemented design, so you can press “Cancel”
when Vivado offers you to open it when the bitstream is generated.

10. Click File -> Export -> Export Hardware after the bitstream is generated. Make sure that
“Include bitstream” checkbox is selected.

11. Click File -> Launch SDK. If you have used the default locations at the previous step and

included the bitstream, just press OK to launch the SDK where we will program the
ZYNQ PS.

12. In the SDK, notice the address map for the processor. We are interested in this example
to interact with the LEDs, which is connected to the PS GPIO, whose registers have a
base address of 0xe000a000 in this case.

13. In the SDK, click File -> New -> Application Project. Choose a project name, a project
language (in this case I will choose C++), and make sure that the design (for which we
exported the bitstream) is selected as the “Hardware Platform”. We want to run the
system bare-metal, so choose standalone as the OS platform. We also need a new

board support package, which will be created automatically at this step. Board support
package provides peripheral drivers and any other libraries which you can use in your
code. Choose Empty Application in the next page and then Finish.

14. In the board support package, open “system.mss” if not already opened, and notice the

documentation and examples for ps7_gpio_0 driver, which we will use to toggle the LED.

 If you open for example xgpiops_hw.h, you will see that the register offsets are
automatically defined for us, which you would need to look-up from the datasheet of the device
otherwise. Similarly “../ps7_cortexa9_0/include/xparameters.h” under BSP defines many things
such as the address mapping, so you do not do these manually. Remember the address map
from system.hdf? These are defined for us automatically here!

Since no (sane) person has time to do everything from scratch, we will use one of the provided
examples to blink the LEDs, but you should know that you can find all the drivers inside the BSP
if needed.

15. Choose the simpler xgpiops_polled example after clicking “Import Examples” for
ps7_gpio_0 inside system.mss.

16. Now copy everything inside the xgpiops_polled_example.c file into your main.cc file (or

simply use this application project). We need to set the pins for the LEDs though, since
the SDK does not automatically know about this.
Modify the code as shown below:

Notice that we took this information from the MiniZed user manual (check step 7 of this
document).

17. To run the code on MiniZed, press the little downward arrow next to the play button, and

choose Run Configurations. Target Setup window should look something like as shown
below:

Make sure that you can see the FPGA Device and the PS Device by clicking Select…, and
select the Application project that we have created in the Application tab. If everything went well,
you should see the LED blinking for the specified number of times.

18. If you want to communicate with the MiniZed, the easiest way to do so is via UART. For
this, you can load the UART example from ps7_uart_1 in system.mss, and play around
with it. Make sure that UART1 is used in the example, since this is the one that is

actually connected on Minized, by using the definition
“XPAR_XUARTPS_1_DEVICE_ID”, and not “XPAR_XUARTPS_0_DEVICE_ID”:
#define UART_DEVICE_ID XPAR_XUARTPS_1_DEVICE_ID

Also, you can select this UART port as the default stdout, so that you can directly print to
the output. If this is not working, click “Modify this BSP’s Settings” in system.mss, select
“standalone” under Overview, and choose ps7_uart_1 for both stdin and stdout, since
we are using these on the MiniZed. Now you can see textual output using a serial
communication program (a SDK terminal is also provided with Xilinx SDK).

19. If you want to use the other peripherals, Xilinx provides drivers (and examples for most)

of the peripherals, so they are a good starting point.

