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Outline

● High-level overview of Chisel

● Several examples

https://www.chisel-lang.org/

https://www.chisel-lang.org/
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Chisel High-Level

● Chisel is a HDL embedded in Scala
● Tailored to large, complex hardware 

designs
● Development of Chisel started in 2012
● Used in projects including RISC-V
● Chisel can be compiled to various other 

languages:
● FIRRTL, Verilog, VHDL, etc.
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What is a DSL?

● Any language tailor-made for some 
domain, e.g.:

● Query languages: SQL, XPath, …
● Markup/down: HTML, CSS, LaTeX, …
● Modeling: UML, SysML, AADL, ...

● Opposite:
Generic languages: C, C++, Verilog, ...

● [Fowler, 2010]

Or a DSL?
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What is a DSEL/eDSL?

● A DSL defined within some host 
language

● Host language is usually a functional 
language: Haskell, ML, Scala, ...

● DSL takes the form of a library
● Easy to implement, extensible:

● No parser needed
● Features of host language are inherited
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What is Scala?

● Modern multi-paradigm programming 
language

● Imperative features:
Very similar to Java

● Functional features:
ADTs, pattern matching, higher-order 
functions, closures, polymorphism 

● Compiling to Java bytecode

https://www.scala-lang.org/

https://www.scala-lang.org/
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Introductory Example

● Multiplexer with 2 and 4 inputs
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What have we seen?

● Modules, more or less like in Verilog
● Specification of module interfaces
● Instantiation of sub-modules
● Connection of wires
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Data-types in Chisel

https://www.chisel-lang.org/api/latest/index.html

https://www.chisel-lang.org/api/latest/index.html


11/25

Data-types in Chisel (2)

● Data-types are Scala classes
● Each data-type comes with a set of 

operations (= methods)
● Bit-widths are often inferred 

automatically
● New types can be introduced

● Similar to records/structs
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Data-types in Chisel (3)

● Data can be marked as Input and 
Output

val muxIO = new Bundle {
    val sel = Input(UInt(1.W))
    val in0 = Input(UInt(1.W))
    val in1 = Input(UInt(1.W))
    val out = Output(UInt(1.W))
}

Unsigned Int,
width 1
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Modules

● Correspond closely to Verilog modules
● Each module comes with:

● An interface, field 
● Instantiation of other modules
● Circuit definitions
● Methods, fields, etc., to structure the 

module definition
● Operator to connect wires: <>

val io = IO(...)
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Stateful Modules

● Different classes for registers:
● Reg Standard register
● RegInit Register with reset value
● RegNext D-flipflop, 1-cycle delay
● RegEnable R. with update-enable
● ShiftRegister n-cycle delay
● …

● Memory: Mem
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Registers (2)

● Updating registers: :=
● Conditional updates:

● Similar to non-blocking assig. in Verilog

when (<condition 1>) {<register update 1>}
.elsewhen (<condition 2>) {<register update 2>} 
... 
.elsewhen (<condition N>) {<register update N>}
...
.otherwise {<default updates>}
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Example with Registers

● Vending machine
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Utilities

● Enum: create named constants

● Mux: if-then-else expression

● MuxCase: build a case expression

val state_on :: state_off :: Nil = Enum(2)

state := MuxCase(default, Array(c1 -> a, c2 -> b))
  

x := Mux(<cond>, <then>, <else>)
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Utilities (2)

● switch: another kind of case expression
  switch (myState) {
  is (state1) {
    // some logic that runs when myState === state1
  }
  is (state2) {
    // some logic that runs when myState === state2
  }
}
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Clock and Resets

● Clocks are usually implicit in the Chisel 
design

● But can be made explicit; e.g., for 
multiple clock domains

● Updates happen at positive clock edges

● Resets are usually also handled 
implicitly (e.g., using RegInit)

● But can be made explicit as well
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Generating Verilog from Chisel

● In the tutorial: add option

● (and install the Verilator RTL simulator)

--backend-name verilator
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Advanced Modeling

● Chisel can be used like Verilog, to 
directly define some design

● But we can also see it as a design 
generator:
Write a (Scala/Chisel) program that will 
produce the design

● “Meta-programming”
● This is what makes Chisel quite 

powerful
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Example:
Mixing Chisel and Scala

● Computing maximum of a vector
● Using higher-order functions and 

polymorphism for abstraction
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Further Reading

● Chisel tutorials:
● https://mybinder.org/v2/gh/freechipsproject/chisel-bootcamp/master

● https://github.com/ucb-bar/chisel-tutorial

● Wiki/User guide:
● https://github.com/ucb-bar/chisel-tutorial/wiki/

● Paper introducing Chisel at DAC 2012:
● https://dl.acm.org/doi/10.1145/2228360.2228584

https://mybinder.org/v2/gh/freechipsproject/chisel-bootcamp/master
https://github.com/ucb-bar/chisel-tutorial
https://github.com/ucb-bar/chisel-tutorial/wiki/
https://dl.acm.org/doi/10.1145/2228360.2228584
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Conclusions

● Many different ways of designing 
circuits:

● Verilog
● Chisel
● HLS
● to be continued

● Which one is best? It depends ...
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Thank you!
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