
1/25

Accelerating Systems with
Programmable Logic Comp.

Lecture 8.5
The Hardware Description Language

Chisel

April 27, 2020

Philipp Rümmer
Uppsala University

Philipp.Ruemmer@it.uu.se

2/25

3/25

Outline

● High-level overview of Chisel

● Several examples

https://www.chisel-lang.org/

https://www.chisel-lang.org/

4/25

Chisel High-Level

● Chisel is a HDL embedded in Scala
● Tailored to large, complex hardware

designs
● Development of Chisel started in 2012
● Used in projects including RISC-V
● Chisel can be compiled to various other

languages:
● FIRRTL, Verilog, VHDL, etc.

5/25

What is a DSL?

● Any language tailor-made for some
domain, e.g.:

● Query languages: SQL, XPath, …
● Markup/down: HTML, CSS, LaTeX, …
● Modeling: UML, SysML, AADL, ...

● Opposite:
Generic languages: C, C++, Verilog, ...

● [Fowler, 2010]

Or a DSL?

6/25

What is a DSEL/eDSL?

● A DSL defined within some host
language

● Host language is usually a functional
language: Haskell, ML, Scala, ...

● DSL takes the form of a library
● Easy to implement, extensible:

● No parser needed
● Features of host language are inherited

7/25

What is Scala?

● Modern multi-paradigm programming
language

● Imperative features:
Very similar to Java

● Functional features:
ADTs, pattern matching, higher-order
functions, closures, polymorphism

● Compiling to Java bytecode

https://www.scala-lang.org/

https://www.scala-lang.org/

8/25

Introductory Example

● Multiplexer with 2 and 4 inputs

9/25

What have we seen?

● Modules, more or less like in Verilog
● Specification of module interfaces
● Instantiation of sub-modules
● Connection of wires

10/25

Data-types in Chisel

https://www.chisel-lang.org/api/latest/index.html

https://www.chisel-lang.org/api/latest/index.html

11/25

Data-types in Chisel (2)

● Data-types are Scala classes
● Each data-type comes with a set of

operations (= methods)
● Bit-widths are often inferred

automatically
● New types can be introduced

● Similar to records/structs

12/25

Data-types in Chisel (3)

● Data can be marked as Input and
Output

val muxIO = new Bundle {
 val sel = Input(UInt(1.W))
 val in0 = Input(UInt(1.W))
 val in1 = Input(UInt(1.W))
 val out = Output(UInt(1.W))
}

Unsigned Int,
width 1

13/25

Modules

● Correspond closely to Verilog modules
● Each module comes with:

● An interface, field
● Instantiation of other modules
● Circuit definitions
● Methods, fields, etc., to structure the

module definition
● Operator to connect wires: <>

val io = IO(...)

14/25

Stateful Modules

● Different classes for registers:
● Reg Standard register
● RegInit Register with reset value
● RegNext D-flipflop, 1-cycle delay
● RegEnable R. with update-enable
● ShiftRegister n-cycle delay
● …

● Memory: Mem

15/25

Registers (2)

● Updating registers: :=
● Conditional updates:

● Similar to non-blocking assig. in Verilog

when (<condition 1>) {<register update 1>}
.elsewhen (<condition 2>) {<register update 2>}
...
.elsewhen (<condition N>) {<register update N>}
...
.otherwise {<default updates>}

16/25

Example with Registers

● Vending machine

17/25

Utilities

● Enum: create named constants

● Mux: if-then-else expression

● MuxCase: build a case expression

val state_on :: state_off :: Nil = Enum(2)

state := MuxCase(default, Array(c1 -> a, c2 -> b))

x := Mux(<cond>, <then>, <else>)

18/25

Utilities (2)

● switch: another kind of case expression
 switch (myState) {
 is (state1) {
 // some logic that runs when myState === state1
 }
 is (state2) {
 // some logic that runs when myState === state2
 }
}

19/25

Clock and Resets

● Clocks are usually implicit in the Chisel
design

● But can be made explicit; e.g., for
multiple clock domains

● Updates happen at positive clock edges

● Resets are usually also handled
implicitly (e.g., using RegInit)

● But can be made explicit as well

20/25

Generating Verilog from Chisel

● In the tutorial: add option

● (and install the Verilator RTL simulator)

--backend-name verilator

21/25

Advanced Modeling

● Chisel can be used like Verilog, to
directly define some design

● But we can also see it as a design
generator:
Write a (Scala/Chisel) program that will
produce the design

● “Meta-programming”
● This is what makes Chisel quite

powerful

22/25

Example:
Mixing Chisel and Scala

● Computing maximum of a vector
● Using higher-order functions and

polymorphism for abstraction

23/25

Further Reading

● Chisel tutorials:
● https://mybinder.org/v2/gh/freechipsproject/chisel-bootcamp/master

● https://github.com/ucb-bar/chisel-tutorial

● Wiki/User guide:
● https://github.com/ucb-bar/chisel-tutorial/wiki/

● Paper introducing Chisel at DAC 2012:
● https://dl.acm.org/doi/10.1145/2228360.2228584

https://mybinder.org/v2/gh/freechipsproject/chisel-bootcamp/master
https://github.com/ucb-bar/chisel-tutorial
https://github.com/ucb-bar/chisel-tutorial/wiki/
https://dl.acm.org/doi/10.1145/2228360.2228584

24/25

Conclusions

● Many different ways of designing
circuits:

● Verilog
● Chisel
● HLS
● to be continued

● Which one is best? It depends ...

Δ v
Δt

Accelerating Systems with Programmable Logic Components – 1DT109 2020 VT2

25

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

