
1DT109 - Accelerating systems with FPGAs
Unstable gradients

Riccardo De Masellis

Uppsala University

December 6, 2021

Recap

Universality theorem says that one hidden layer is enough to
approximate any continuous function. However:

In many tasks, e.g., visual pattern recognition
deep networks are a better choice.

Sometimes having multiple layers reduces the number of total
neurons1.

1Something similar happens with circuits depth as well.
| 1DT109 - Accelerating systems with FPGAs (Unstable gradients) 2/10

How do we train deep networks?

Problem
Layers learn at different speeds. In particular, early layers barely
change their weights at all (but it could happen the other way

around as well).

| 1DT109 - Accelerating systems with FPGAs (Unstable gradients) 3/10

The vanishing gradient problem

Network [748, 30, 30, 10],
showing only the top six
neurons of the two hidden
layers.
Bars represent ∂C

∂b for each
neuron, on the MNIST digits,
at the beginning of the train-
ing.

| 1DT109 - Accelerating systems with FPGAs (Unstable gradients) 4/10

Coincidence? Don’t think so...

δℓj =
∂C
∂bℓj

, “gradient”2 of j-th neuron in ℓ-th layer;

δℓ vector of all “gradients” of the ℓ-th layer;

with
∥∥δℓ∥∥ = 2

√
δℓ1 + . . .+ δℓn, with n number of neuron in layer

ℓ, we denote the “speed” of learning of layer ℓ.

On the example above we get:∥∥δ1
∥∥ = 0.07∥∥δ2
∥∥ = 0.31

With a [784, 30, 30, 30, 10] we get:∥∥δ1
∥∥ = 0.012∥∥δ2
∥∥ = 0.060∥∥δ3
∥∥ = 0.283

2not really, only for the bias
| 1DT109 - Accelerating systems with FPGAs (Unstable gradients) 5/10

Coincidence? Don’t think so...

δℓj =
∂C
∂bℓj

, “gradient”2 of j-th neuron in ℓ-th layer;

δℓ vector of all “gradients” of the ℓ-th layer;

with
∥∥δℓ∥∥ = 2

√
δℓ1 + . . .+ δℓn, with n number of neuron in layer

ℓ, we denote the “speed” of learning of layer ℓ.

On the example above we get:∥∥δ1
∥∥ = 0.07∥∥δ2
∥∥ = 0.31

With a [784, 30, 30, 30, 10] we get:∥∥δ1
∥∥ = 0.012∥∥δ2
∥∥ = 0.060∥∥δ3
∥∥ = 0.283

2not really, only for the bias
| 1DT109 - Accelerating systems with FPGAs (Unstable gradients) 5/10

Coincidence? Don’t think so...

δℓj =
∂C
∂bℓj

, “gradient”2 of j-th neuron in ℓ-th layer;

δℓ vector of all “gradients” of the ℓ-th layer;

with
∥∥δℓ∥∥ = 2

√
δℓ1 + . . .+ δℓn, with n number of neuron in layer

ℓ, we denote the “speed” of learning of layer ℓ.

On the example above we get:∥∥δ1
∥∥ = 0.07∥∥δ2
∥∥ = 0.31

With a [784, 30, 30, 30, 10] we get:∥∥δ1
∥∥ = 0.012∥∥δ2
∥∥ = 0.060∥∥δ3
∥∥ = 0.283

2not really, only for the bias
| 1DT109 - Accelerating systems with FPGAs (Unstable gradients) 5/10

Does training change things?

Batch gradient descent, 1000 images, 500 epochs.

The speed of learning start slower in earlier layers;
it keeps being slower during the training (100 ratio).

| 1DT109 - Accelerating systems with FPGAs (Unstable gradients) 6/10

Let’s analyse a simple network...

Let’s analyse ∂C
∂b1

:

aj = σ(zj)

zj = wjaj−1 + bj

| 1DT109 - Accelerating systems with FPGAs (Unstable gradients) 7/10

...carefully!

Maximum is at
σ′(0) = 1

4 ;
|wj | < 1 because they are
initialised according to a
Gaussian with mean 0
and standard deviation 1.

|wjσ
′(zj)| <

1
4

Vanishing gradient explained!

The more such terms are multiplied, the smallest the product
becomes.

| 1DT109 - Accelerating systems with FPGAs (Unstable gradients) 8/10

...carefully!

Maximum is at
σ′(0) = 1

4 ;
|wj | < 1 because they are
initialised according to a
Gaussian with mean 0
and standard deviation 1.

|wjσ
′(zj)| <

1
4

Vanishing gradient explained!

The more such terms are multiplied, the smallest the product
becomes.

| 1DT109 - Accelerating systems with FPGAs (Unstable gradients) 8/10

The exploding gradient

If, during the learning, it happens that terms |wjσ
′(zj)| are (much)

larger than 1, then multiplied together we get an exploding
gradient.

However, this does not happen often in practice.

| 1DT109 - Accelerating systems with FPGAs (Unstable gradients) 9/10

How to cope with unstable gradient

Again, it’s kind of heuristic:
For image recognition, using convolutional neural network
helps;
using rectified linear activation functions usually speeds up the
training;
initialise the weights to neurons as Gaussian random variables
with mean 0 and standard deviation 1√

nin
where nin is the

number of inputs of the neuron.

| 1DT109 - Accelerating systems with FPGAs (Unstable gradients) 10/10

