
1DT109 - Accelerating systems with FPGAs
Expressive power of neural networks

Riccardo De Masellis

Uppsala University

December 6, 2021



On computing functions

A neural network with one hidden layer can approximate (to any
desired precision) any continuous function with any number of

inputs and outputs (Cybenko ’89).

the more hidden neurons, the better the approximation (fix ε > 0,
there exists a number of hidden neurons such that the error of the
net is below ε for every input).

Therefore, neural networks are “universal computational devices”.

| 1DT109 - Accelerating systems with FPGAs (Expressive power of neural networks) 2/18



On computing functions

A neural network with one hidden layer can approximate (to any
desired precision) any continuous function with any number of

inputs and outputs (Cybenko ’89).

the more hidden neurons, the better the approximation (fix ε > 0,
there exists a number of hidden neurons such that the error of the
net is below ε for every input).

Therefore, neural networks are “universal computational devices”.

| 1DT109 - Accelerating systems with FPGAs (Expressive power of neural networks) 2/18



On computing functions

A neural network with one hidden layer can approximate (to any
desired precision) any continuous function with any number of

inputs and outputs (Cybenko ’89).

the more hidden neurons, the better the approximation (fix ε > 0,
there exists a number of hidden neurons such that the error of the
net is below ε for every input).

Therefore, neural networks are “universal computational devices”.

| 1DT109 - Accelerating systems with FPGAs (Expressive power of neural networks) 2/18



Simple case

Let us consider a single input-single output function:

| 1DT109 - Accelerating systems with FPGAs (Expressive power of neural networks) 3/18



Step 1: what a single hidden neuron can compute

1 fix the weight w to a large value;
2 set the position by modifying the bias b.

(We use step functions as it is easier to understand their contribution to the
output layer)

| 1DT109 - Accelerating systems with FPGAs (Expressive power of neural networks) 4/18



Position of the step function

With large values of w , the position of the step is:

s = − b

w

| 1DT109 - Accelerating systems with FPGAs (Expressive power of neural networks) 5/18



Step 2: adding a neuron

Let us consider the contributions of the bottom hidden neuron.

The plot is for w1a1 + w2a2 where a1 and a2 are the activations of
the top and bottom hidden neurons. This is different from the
output of the net, which computes σ(w1a1 + w2a2 + b) where b is
the bias of the output neuron.

| 1DT109 - Accelerating systems with FPGAs (Expressive power of neural networks) 6/18



Step 3: the “bump”

By adjusting the weights of the output layer, we can obtain a
“bump” of any height, positioned depending on s1 and s2.

To simplify notation, we can introduce parameter h for the height
(instead than w1 and w2 = −w1).

| 1DT109 - Accelerating systems with FPGAs (Expressive power of neural networks) 7/18



Step 4: add pairs of hidden neurons

By adding pairs of hidden neurons, each pair “generating” a bump...

| 1DT109 - Accelerating systems with FPGAs (Expressive power of neural networks) 8/18



The missing step

The plots so far show the weighted sum of the activation of the
hidden layer, not the output of the network...

If we try to approximate f̂ = σ−1(f (x)) with
w1a1 + w2a2 + . . .wnan then the output of the NN is:

σ(f̂ ) = w1a1 + w2a2 + . . .wnan

where σ−1 is the inverse of σ and we set the bias of the last layer
to 0.

| 1DT109 - Accelerating systems with FPGAs (Expressive power of neural networks) 9/18



The missing step

The plots so far show the weighted sum of the activation of the
hidden layer, not the output of the network...

If we try to approximate f̂ = σ−1(f (x)) with
w1a1 + w2a2 + . . .wnan then the output of the NN is:

σ(f̂ ) = w1a1 + w2a2 + . . .wnan

where σ−1 is the inverse of σ and we set the bias of the last layer
to 0.

| 1DT109 - Accelerating systems with FPGAs (Expressive power of neural networks) 9/18



Many input variables, single hidden neuron

Same idea but on a n-dimensional space.

| 1DT109 - Accelerating systems with FPGAs (Expressive power of neural networks) 10/18



Step function in x and y directions

Sx = − b

w1
with w2 = 0 Sy = − b

w2
with w1 = 0

| 1DT109 - Accelerating systems with FPGAs (Expressive power of neural networks) 11/18



Two hidden units: multi-dimensional bump

where parameter h is as before, and controls the height of the
bump.

| 1DT109 - Accelerating systems with FPGAs (Expressive power of neural networks) 12/18



More hidden neurons...

| 1DT109 - Accelerating systems with FPGAs (Expressive power of neural networks) 13/18



Now we do need the bias on the output layer

Generally, b ≈ −3h
2

| 1DT109 - Accelerating systems with FPGAs (Expressive power of neural networks) 14/18



More towers...

| 1DT109 - Accelerating systems with FPGAs (Expressive power of neural networks) 15/18



Many towers

Once again, the shape of of the above should approximate σ−1(f ),
as all the plots we have seen before represent the weighted output
in the last layer (not the net output).

| 1DT109 - Accelerating systems with FPGAs (Expressive power of neural networks) 16/18



Even more input variables

Same reasoning, we try to compute multi-dimensional towers.
The bias of the output neuron is then set to:

(−m +
1
2
)h where m is the number of inputs/dimensions

| 1DT109 - Accelerating systems with FPGAs (Expressive power of neural networks) 17/18



Final remarks

This just give an intuition of the universality of NN, does not
say that it is the right way of learning functions;
we have showed universality with more than one hidden layer,
while the theorem says one hidden layer...
that does not mean it is in general a good idea to use only one
layer (think of convolutional networks).

| 1DT109 - Accelerating systems with FPGAs (Expressive power of neural networks) 18/18


