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On computing functions

A neural network with one hidden layer can approximate (to any
desired precision) any continuous function with any number of

inputs and outputs (Cybenko ’89).

the more hidden neurons, the better the approximation (fix ε > 0,
there exists a number of hidden neurons such that the error of the
net is below ε for every input).

Therefore, neural networks are “universal computational devices”.
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Simple case

Let us consider a single input-single output function:
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Step 1: what a single hidden neuron can compute

1 fix the weight w to a large value;
2 set the position by modifying the bias b.

(We use step functions as it is easier to understand their contribution to the
output layer)
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Position of the step function

With large values of w , the position of the step is:

s = − b

w
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Step 2: adding a neuron

Let us consider the contributions of the bottom hidden neuron.

The plot is for w1a1 + w2a2 where a1 and a2 are the activations of
the top and bottom hidden neurons. This is different from the
output of the net, which computes σ(w1a1 + w2a2 + b) where b is
the bias of the output neuron.
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Step 3: the “bump”

By adjusting the weights of the output layer, we can obtain a
“bump” of any height, positioned depending on s1 and s2.

To simplify notation, we can introduce parameter h for the height
(instead than w1 and w2 = −w1).
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Step 4: add pairs of hidden neurons

By adding pairs of hidden neurons, each pair “generating” a bump...
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The missing step

The plots so far show the weighted sum of the activation of the
hidden layer, not the output of the network...

If we try to approximate f̂ = σ−1(f (x)) with
w1a1 + w2a2 + . . .wnan then the output of the NN is:

σ(f̂ ) = w1a1 + w2a2 + . . .wnan

where σ−1 is the inverse of σ and we set the bias of the last layer
to 0.
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Many input variables, single hidden neuron

Same idea but on a n-dimensional space.
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Step function in x and y directions

Sx = − b

w1
with w2 = 0 Sy = − b

w2
with w1 = 0
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Two hidden units: multi-dimensional bump

where parameter h is as before, and controls the height of the
bump.
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More hidden neurons...

| 1DT109 - Accelerating systems with FPGAs (Expressive power of neural networks) 13/18



Now we do need the bias on the output layer

Generally, b ≈ −3h
2
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More towers...
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Many towers

Once again, the shape of of the above should approximate σ−1(f ),
as all the plots we have seen before represent the weighted output
in the last layer (not the net output).
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Even more input variables

Same reasoning, we try to compute multi-dimensional towers.
The bias of the output neuron is then set to:

(−m +
1
2
)h where m is the number of inputs/dimensions
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Final remarks

This just give an intuition of the universality of NN, does not
say that it is the right way of learning functions;
we have showed universality with more than one hidden layer,
while the theorem says one hidden layer...
that does not mean it is in general a good idea to use only one
layer (think of convolutional networks).
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