1DT109 - Accelerating systems with FPGAs

How to improve learning

Riccardo De Masellis

Uppsala University

December 6, 2021

Recap

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 2/29

Supervised learning:
® X input vector;
m y(x) unknown function we want to approximate;
m o(x,w) hypothesis function;

m loss and cost function.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 3/29

What we have seen so far

We used squared error loss (SE) function:

1

L6, 7, 0) = (y(x) = o0, w))* = (v(x) = g)

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 4/29

What we have seen so far

We used squared error loss (SE) function:

1

L6, 7, 0) = (y(x) = o0, w))* = (v(x) = g)

The cost function is therefore:

1
C(w) = Z Lsei(x,y, 0 Z(y m)z

where n is the number of examples in the training set.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 4/29

Gradient descent

w" = [—¢, +¢] (e close to zero, e.g., 0.05) IMPORTANT!

do {
Wold — wew
Wgew Wold _ naavfo(wold)
Wrr.rzew — W;;Id _ U%(Wcld)

} while (C(Wnew) < C(Wo/d))

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 5/29

Making gradient descent (GD) faster

Specifically for (FF) neural networks:
m stochastic GD: batch size = 1,
m batch GD: batch = training set;
m mini-batch GD: 1 < batch size < training set size;

m epoch.

Number of feed-forward pass and backpropagation pass in the
above (training set size = n)?

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 6/29

Cross entropy loss function

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 7/29

Problems with squared error loss

EASY SETTING: one neuron, binary classification, two weights w
(including bias) and one training example x.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 8/29

Problems with squared error loss

EASY SETTING: one neuron, binary classification, two weights w
(including bias) and one training example x.

1

C(w) = 5 (¥(x) = a(x, w))?

oC do
= (obuw) ~ YO T

What happens when the neuron badly misclassify?

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 8/29

Problems with squared error loss

EASY SETTING: one neuron, binary classification, two weights w
(including bias) and one training example x.

1

C(w) = 5 (¥(x) = a(x, w))?

oC do
= (obuw) ~ YO T

What happens when the neuron badly misclassify?
m [o(x,w) — y(x)| &~ 1 which means that:
m either o(x,w) =0 (and y(x) = 1) or o(x,w) =1 (and
y(x)=0) ...

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 8/29

Problems with squared error loss: SLOW

0.5

6420 2 46

When o(x,w) =0 or o(x,w) = 1 then g—vfo(w) ~ 0 therefore,

recalling the update rule of GD:

ocC
wge = wg'? — UTM(WOH)

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 9/29

Problems with squared error loss: SLOW

0.5

6420 2 46

When o(x,w) =0 or o(x,w) = 1 then g—vfo(w) ~ 0 therefore,

recalling the update rule of GD:
old oc

) Id
Wo =W —7778W0(W0)

The learning is very slow at the beginning!

(The same intuition also applies to deep network.)

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 9/29

Problems with squared error loss: NON-CONVEX

n

1 1 2
C(W Z Lsel(xa}/7 Z(_}/(Xi) B m)

i_1

A function C is convex if it is twice differentiable and its second
derivative g 2°C is positive for all w. A convex function has a global

minimum.

|
C(w) is NON-CONVEX (in general): it might have local minimal!

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 10/29

Introducing: cross-entropy loss function

Definition (Cross-entropy loss function)

Let x be an example, y(x) a target function and o(x,w) an
hypothesis:

Lee(x,y,a) = —log(o(x,w)) if y(x)=1
ce\X, Y, _/og(l—U(X, W)) if y(x) =0

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 11/29

Introducing: cross-entropy loss function

Definition (Cross-entropy loss function)

Let x be an example, y(x) a target function and o(x,w) an
hypothesis:

Lee(x,y,a) = —log(o(x,w)) if y(x)=1
ce\X, Y, _/og(l—U(X, W)) if y(x) =0

log(z) log(1l — z)

| 1DT109 - Accelerating systemsivg;ith FPGAs (How to improve learning) A ‘ 11/29

Cross-entropy loss function

| —log(o(x,w)) if y(x)=1
Leelxoy,0) = {—log(l —o(x,w)) if y(x) =0

Lee(x,y,0) = —y(x) log(o(x,w)) — (1 — y(x)) log(1 — o(x,w))

—log(z) —log(1 — z)

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 12/29

Good news

If we take L. as loss function, then the cost function is:

1 n
= ; Zl Lce(Xi7y7U) -
=

_72 (xi) log(o(xi,w)) + (1 — y(x;)) log(1 — o(x;, w)))

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 13/29

Good news #1

C(w) = —% Z(y(x;) log(o(xi,w))+(1—y(x;)) log(1—o(xi,w)))

i=1

In a NN with no hidden layers, it is convex and it always has a
global minimum, regardless of the TS (with hidden layers, it is not
always the case).

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 14/29

Good news #2

M

C(w) = —1; 2_(r(xi) log(o(xi, w))+(1-y(x)) log(1-0(x;,w)))
i=1

Let's compute the partial derivative wrt w;:

S =22 (e Tt b

by doing some math we end up with:

ZXJ XI7 y(X,-))

5WJ

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 15/29

Good news #2

M
Cw) = 1 > (v(xi) oo xs, w)) +(1-y(x1)) fog (1 (x;. w)))
i=1

Let's compute the partial derivative wrt w;:

S =22 (e Tt b

by doing some math we end up with:

ZXJ XI7 y(X,-))

3WJ

|
Now the update on weights depends on the error in the output

o(xi,w) — y(x;)!

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 15/29

Overfitting

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 16/29

Overfitting

When do we stop the learning phase?

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 17/29

Overfitting

Problem

When do we stop the learning phase?

Recall: we have training set and test set. Clearly, the more we
train, the less the cost Ciain (on the training set) becomes:

Cost on the training data

0.010
0.009

0.008 \\

0.007

0.006

0.005

0.00455 250 300 350 400

Epoch

30 hidden neurons, a mini-batch size of 10, 400 epochs, 1000 training images, n = 0.5.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 17/29

Overfitting, cont’

But if we look at the classification accuracy on the test set:

Accuracy (%) on the test data

82.20) AN M”
h‘ \M
8215
8210
82.05

82.00

|
81.95 M i
|

300 350 400
Epoch

After around epoch 280, the model does not get better accuracy. It
is overfitting the training data. That is: it is specialising in
perfectly recognising the train examples, but it does not generalise
on new examples.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 18/29

The validation set

We can use another set, the validation set, and we use this to
compute the accuracy (instead of using the training set) for
choosing hyper-parameters. We stop when the accuracy does not
improve (early stopping strategy).

Why?

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 19/29

The validation set

We can use another set, the validation set, and we use this to
compute the accuracy (instead of using the training set) for
choosing hyper-parameters. We stop when the accuracy does not
improve (early stopping strategy).

Why?

If we used the test set, we would overfit the hyper-parameters to
the test set.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 19/29

Always better to have lots of data

When you have a lot of data, overfitting is never a problem!

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 20/29

A Regularization

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 21/29

Avoiding overfitting: regularization

Weight decay regularization:

C(w) =~ S (v log(0)) + (1) log(1 —0) + - > w,

i=1 j=1

bias towards small weights.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 22/29

What happens with regularization term

C(w)=GCo+ ZW

The partial derivatives wrt w (bias excluded) are:

oc _ G A
ow Ow
The new gradient descent updates the weights in this way:
0Co nA nA 0Co

Whew = Wo/d—ﬁm(wold)—TWo/d =(1- T)Wold_naT(Wold)

notice the weight decay, making the weight smaller.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 23/29

Does it work? (A =0.1, TS size = 1000)

With regularization

Cost on the training data

300
Epoch

Accuracy (%) on the test data

il
.\‘\“ i "Vil”\"

85850 250 300 350 400
Epoch

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 24/29

Does it work? (A =0.1, TS size

With regularization Without regularization

Cost on the training data Cost on the training data

0.0
N\
0.009 \
\ \
020 0.008 \
\
o1 0.007 \\
016 AN
. 0.006 N
014 >
012 s 0.005
1900 250 300 350 200 0,004 P} %0 e} 00
Epoch Epoch
o Accuracy (%) on the test data
a2 Accuracy (%) on the test data 82.30 Y (%)
8225
82.20
8215
82,10
8205
82.00
8195
!
i 8L9 i 5
8800 250 300 350 400 %o 250 b 350 400
Epoch Epoch

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 24/29

Why does it work?

For empirical reasons (and kind of heuristic).

|
Smaller weights ~ lower complexity. Occam'’s razor: prefer simpler
hypothesis to explain a phenomenon.

Also: if weights are smaller, small changes on the inputs do not

change much the outputs. And, they are resistant to noise in the
training data.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 25/29

Why are biases not regularized?

Again, mostly for empirical reasons, and convention.

However, having large biases:
m does not affect overfitting as much as having large weights and

m provides more flexibility, sometimes is desirable.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 26/29

H Choosing hyper-parameters

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 27/29

Importance of hyper-paramters

30 hidden neurons;
mini-batch size of 10;
30 epochs;

n = 10;

A = 1000.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 28/29

Importance of hyper-paramters

30 hidden neurons;
mini-batch size of 10;
30 epochs;

n = 10;

A = 1000.

Accuracy on evaluation data: 10%!

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 28/29

Coping with random results

How to (more or less) scientifically address the problem of setting
the hyper-paramters?
Strategies:

m try to get results fast: restrict the classification classes (and
therefore training set);

m attack one hyper-parameter at a time, starting from 7 and
monitor the training cost.

m move to \ using the accuracy on evaluation set;

m use early stopping for the number of epochs.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 29/29

	Recap
	Cross entropy loss function
	Overfitting
	Regularization
	Choosing hyper-parameters

