
1DT109 - Accelerating systems with FPGAs
How to improve learning

Riccardo De Masellis

Uppsala University

December 6, 2021

1 Recap

2 Cross entropy loss function

3 Overfitting

4 Regularization

5 Choosing hyper-parameters

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 2/29

The basis

Supervised learning:
xxx input vector;
y(xxx) unknown function we want to approximate;
σ(xxx ,www) hypothesis function;
loss and cost function.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 3/29

What we have seen so far

We used squared error loss (SE) function:

Lsel(xxx , y , σ) = (y(xxx)− σ(xxx ,www))2 = (y(xxx)− 1
1 + e−(wwwTxxx)

)2

The cost function is therefore:

C (www) =
1
2n

n∑
i=1

Lsel(xxx , y , σ) =
1
2n

n∑
i=1

(y(xxx i)−
1

1 + e−(wwwTxxx i)
)2

where n is the number of examples in the training set.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 4/29

What we have seen so far

We used squared error loss (SE) function:

Lsel(xxx , y , σ) = (y(xxx)− σ(xxx ,www))2 = (y(xxx)− 1
1 + e−(wwwTxxx)

)2

The cost function is therefore:

C (www) =
1
2n

n∑
i=1

Lsel(xxx , y , σ) =
1
2n

n∑
i=1

(y(xxx i)−
1

1 + e−(wwwTxxx i)
)2

where n is the number of examples in the training set.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 4/29

Gradient descent

wwwnew := [−ε,+ε] (ε close to zero, e.g., 0.05) IMPORTANT!

do {

wwwold := wwwnew

wnew
0 := wold

0 − η ∂C
∂w0

(wwwold)
. . .
wnew
m := wold

m − η ∂C
∂wm

(wwwold)

} while (C (wwwnew) < C (wwwold))

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 5/29

Making gradient descent (GD) faster

Specifically for (FF) neural networks:
stochastic GD: batch size = 1;
batch GD: batch = training set;
mini-batch GD: 1 < batch size < training set size;
epoch.

Number of feed-forward pass and backpropagation pass in the
above (training set size = n)?

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 6/29

1 Recap

2 Cross entropy loss function

3 Overfitting

4 Regularization

5 Choosing hyper-parameters

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 7/29

Problems with squared error loss

EASY SETTING: one neuron, binary classification, two weights w
(including bias) and one training example x .

C (www) =
1
2
(y(x)− σ(x ,www))2

∂C

∂w0
= (σ(x ,www)− y(x))

∂σ

∂zzz
x

What happens when the neuron badly misclassify?
|σ(x ,www)− y(x)| ≈ 1 which means that:
either σ(x ,www) = 0 (and y(x) = 1) or σ(x ,www) = 1 (and
y(x) = 0) ...

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 8/29

Problems with squared error loss

EASY SETTING: one neuron, binary classification, two weights w
(including bias) and one training example x .

C (www) =
1
2
(y(x)− σ(x ,www))2

∂C

∂w0
= (σ(x ,www)− y(x))

∂σ

∂zzz
x

What happens when the neuron badly misclassify?

|σ(x ,www)− y(x)| ≈ 1 which means that:
either σ(x ,www) = 0 (and y(x) = 1) or σ(x ,www) = 1 (and
y(x) = 0) ...

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 8/29

Problems with squared error loss

EASY SETTING: one neuron, binary classification, two weights w
(including bias) and one training example x .

C (www) =
1
2
(y(x)− σ(x ,www))2

∂C

∂w0
= (σ(x ,www)− y(x))

∂σ

∂zzz
x

What happens when the neuron badly misclassify?
|σ(x ,www)− y(x)| ≈ 1 which means that:
either σ(x ,www) = 0 (and y(x) = 1) or σ(x ,www) = 1 (and
y(x) = 0) ...

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 8/29

Problems with squared error loss: SLOW

When σ(x ,www) = 0 or σ(x ,www) = 1 then ∂C
∂w0

(www) ≈ 0 therefore,
recalling the update rule of GD:

wnew
0 := wold

0 − η
∂C

∂w0
(wold)

The learning is very slow at the beginning!

(The same intuition also applies to deep network.)

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 9/29

Problems with squared error loss: SLOW

When σ(x ,www) = 0 or σ(x ,www) = 1 then ∂C
∂w0

(www) ≈ 0 therefore,
recalling the update rule of GD:

wnew
0 := wold

0 − η
∂C

∂w0
(wold)

The learning is very slow at the beginning!

(The same intuition also applies to deep network.)
| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 9/29

Problems with squared error loss: NON-CONVEX

C (www) =
1
2n

n∑
i=1

Lsel(xxx , y , σ) =
1
2n

n∑
i=1

(y(xxx i)−
1

1 + e−(wwwTxxx i)
)2

A function C is convex if it is twice differentiable and its second
derivative ∂2C

∂www2 is positive for all www . A convex function has a global
minimum.

C(www) is NON-CONVEX (in general): it might have local minima!

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 10/29

Introducing: cross-entropy loss function

Definition (Cross-entropy loss function)

Let xxx be an example, y(xxx) a target function and σ(xxx ,www) an
hypothesis:

Lce(xxx , y , a) =

{
−log(σ(xxx ,www)) if y(xxx) = 1
−log(1 − σ(xxx ,www)) if y(xxx) = 0

log(z) log(1 − z)

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 11/29

Introducing: cross-entropy loss function

Definition (Cross-entropy loss function)

Let xxx be an example, y(xxx) a target function and σ(xxx ,www) an
hypothesis:

Lce(xxx , y , a) =

{
−log(σ(xxx ,www)) if y(xxx) = 1
−log(1 − σ(xxx ,www)) if y(xxx) = 0

log(z) log(1 − z)

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 11/29

Cross-entropy loss function

Lce(xxx , y , σ) =

{
−log(σ(xxx ,www)) if y(xxx) = 1
−log(1 − σ(xxx ,www)) if y(xxx) = 0

Lce(xxx , y , σ) = −y(xxx) log(σ(xxx ,www))− (1 − y(xxx)) log(1 − σ(xxx ,www))

−log(z) −log(1 − z)

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 12/29

Good news

If we take Lce as loss function, then the cost function is:

C (www) =
1
n

n∑
i=1

Lce(xxx i , y , σ) =

−1
n

n∑
i=1

(y(xxx i) log(σ(xxx i ,www)) + (1 − y(xxx i)) log(1 − σ(xxx i ,www)))

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 13/29

Good news #1

C (www) = −1
n

n∑
i=1

(y(xxx i) log(σ(xxx i ,www))+(1−y(xxx i)) log(1−σ(xxx i ,www)))

In a NN with no hidden layers, it is convex and it always has a
global minimum, regardless of the TS (with hidden layers, it is not

always the case).

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 14/29

Good news #2

C (www) = − 1
M

M∑
i=1

(y(xxx i) log(σ(xxx i ,www))+(1−y(xxx i)) log(1−σ(xxx i ,www)))

Let’s compute the partial derivative wrt wj :

∂C

∂wj
=

1
n

n∑
i=1

(
y(x)

σ(xxx i ,www)
− 1 − y(xxx i)

1 − σ(xxx i ,www)

)
∂σ

∂wj

by doing some math we end up with:

∂C

∂wj
=

1
n

n∑
i=1

xj(σ(xxx i ,www)− y(xxx i))

Now the update on weights depends on the error in the output
σ(xxx i ,www)− y(xxx i)!

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 15/29

Good news #2

C (www) = − 1
M

M∑
i=1

(y(xxx i) log(σ(xxx i ,www))+(1−y(xxx i)) log(1−σ(xxx i ,www)))

Let’s compute the partial derivative wrt wj :

∂C

∂wj
=

1
n

n∑
i=1

(
y(x)

σ(xxx i ,www)
− 1 − y(xxx i)

1 − σ(xxx i ,www)

)
∂σ

∂wj

by doing some math we end up with:

∂C

∂wj
=

1
n

n∑
i=1

xj(σ(xxx i ,www)− y(xxx i))

Now the update on weights depends on the error in the output
σ(xxx i ,www)− y(xxx i)!

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 15/29

1 Recap

2 Cross entropy loss function

3 Overfitting

4 Regularization

5 Choosing hyper-parameters

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 16/29

Overfitting

Problem
When do we stop the learning phase?

Recall: we have training set and test set. Clearly, the more we
train, the less the cost Ctrain (on the training set) becomes:

30 hidden neurons, a mini-batch size of 10, 400 epochs, 1000 training images, η = 0.5.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 17/29

Overfitting

Problem
When do we stop the learning phase?

Recall: we have training set and test set. Clearly, the more we
train, the less the cost Ctrain (on the training set) becomes:

30 hidden neurons, a mini-batch size of 10, 400 epochs, 1000 training images, η = 0.5.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 17/29

Overfitting, cont’d

But if we look at the classification accuracy on the test set:

After around epoch 280, the model does not get better accuracy. It
is overfitting the training data. That is: it is specialising in
perfectly recognising the train examples, but it does not generalise
on new examples.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 18/29

The validation set

We can use another set, the validation set, and we use this to
compute the accuracy (instead of using the training set) for
choosing hyper-parameters. We stop when the accuracy does not
improve (early stopping strategy).

Why?

If we used the test set, we would overfit the hyper-parameters to
the test set.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 19/29

The validation set

We can use another set, the validation set, and we use this to
compute the accuracy (instead of using the training set) for
choosing hyper-parameters. We stop when the accuracy does not
improve (early stopping strategy).

Why?

If we used the test set, we would overfit the hyper-parameters to
the test set.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 19/29

Always better to have lots of data

When you have a lot of data, overfitting is never a problem!

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 20/29

1 Recap

2 Cross entropy loss function

3 Overfitting

4 Regularization

5 Choosing hyper-parameters

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 21/29

Avoiding overfitting: regularization

Weight decay regularization:

C (www) = −1
n

n∑
i=1

(y log(σ)) + (1 − y) log(1 − σ) +
λ

2n

m∑
j=1

w2
m

Idea:
bias towards small weights.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 22/29

What happens with regularization term

C (www) = C0 +
λ

2n

m∑
j=1

w2
m

The partial derivatives wrt w (bias excluded) are:

∂C

∂w
=

∂C0

∂w
+

λ

n
w

The new gradient descent updates the weights in this way:

wnew = wold−η
∂C0

∂w
(wwwold)−

ηλ

n
wold = (1 − ηλ

n
)wold−η

∂C0

∂w
(wwwold)

notice the weight decay, making the weight smaller.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 23/29

Does it work? (λ = 0.1, TS size = 1000)
With regularization

Without regularization

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 24/29

Does it work? (λ = 0.1, TS size = 1000)
With regularization Without regularization

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 24/29

Why does it work?

For empirical reasons (and kind of heuristic).

Smaller weights ≈ lower complexity. Occam’s razor: prefer simpler
hypothesis to explain a phenomenon.

Also: if weights are smaller, small changes on the inputs do not
change much the outputs. And, they are resistant to noise in the
training data.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 25/29

Why are biases not regularized?

Again, mostly for empirical reasons, and convention.

However, having large biases:
does not affect overfitting as much as having large weights and
provides more flexibility, sometimes is desirable.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 26/29

1 Recap

2 Cross entropy loss function

3 Overfitting

4 Regularization

5 Choosing hyper-parameters

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 27/29

Importance of hyper-paramters

30 hidden neurons;
mini-batch size of 10;
30 epochs;
η = 10;
λ = 1000.

Accuracy on evaluation data: 10%!

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 28/29

Importance of hyper-paramters

30 hidden neurons;
mini-batch size of 10;
30 epochs;
η = 10;
λ = 1000.

Accuracy on evaluation data: 10%!

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 28/29

Coping with random results

How to (more or less) scientifically address the problem of setting
the hyper-paramters?
Strategies:

try to get results fast: restrict the classification classes (and
therefore training set);
attack one hyper-parameter at a time, starting from η and
monitor the training cost.
move to λ using the accuracy on evaluation set;
use early stopping for the number of epochs.

| 1DT109 - Accelerating systems with FPGAs (How to improve learning) 29/29

	Recap
	Cross entropy loss function
	Overfitting
	Regularization
	Choosing hyper-parameters

