
1/65

Accelerating Systems with
Programmable Logic Comp.

A Hardware Verification Tutorial

May 4, 2020

Philipp Rümmer
Uppsala University

Philipp.Ruemmer@it.uu.se

2/65

Guest lecture

Mahdad Davari:
Custom Silicon Solutions at
Ericsson

Wednesday May 6th, 10:15 – 12:00
(usual Zoom Meeting)

3/65

The projects

● Hardware is on the way to you,
probably you will get it sometime this
week. Let us know if you have not
received it by May 13!

● Each package contains a return
envelope, which you can use after the
course to send back the boards

● We will introduce & start the project
next week
(email with more information to come)

4/65

Outline of this lecture

● Functional Verification, test benches
● SystemVerilog assertions
● Automated assertion checking: EBMC

● Lab 3

● Bounded Model Checking
● k-induction

5/65

Verifying Designs is Important ...

● Hardware is created that takes care of
possibly critical functions

● In particular in Embedded Systems

● Mistakes can be expensive
● Intel’s FDIV bug: ~1/2 billion $

(needed to recall defective processors)

● Rule of thumb: ~70% of development
time is spent with verification
(same for hardware as for software)

6/65

What can be done?

● Testing + Simulation (~90% of effort)
● Hand-written test benches that exercise

interesting scenarios
As done in the labs!
(standard, but not very scalable)

● Constrained-random simulation
Randomly generate inputs, but only
those satisfying given constraints
(standard in industry)

7/65

You have already seen this!

● In Vivado/Verilog:
Test benches written in Verilog
(often using unsynthesizable code)

● In Vivado HLS:
Test benches written in C

● In Chisel:
Test benches written in Scala
(also using random testing)

8/65

9/65

Test data is defined.
In Constrained-Random
Simulation, represented

by contraints and
input distributions

10/65

Outputs are as expected?
→ Data checkers

Protocols are followed?
→ Protocol checkers

Test data is defined.
In Constrained-Random
Simulation, represented

by contraints and
input distributions

11/65

Outputs are as expected?
→ Data checkers

Protocols are followed?
→ Protocol checkers

Code coverage/
Toggle coverage/
Branch coverage/

Functional coverage

Test data is defined.
In Constrained-Random
Simulation, represented

by contraints and
input distributions

12/65

What can be done? (2)

● Formal verification (~10% of effort)
● Statically analyse all possible

behaviours
● Most rigorous way to develop systems
● Main bottleneck today:

needs properties/specifications:
What is a system supposed to do?

● Focus of this lecture

13/65

What can be done? (3)

● Equivalence checking
● Instance of formal verification

14/65

What can be done? (3)

● Equivalence checking
● Instance of formal verification
● Vertically: check that

synthesis/place/route preserves
behaviour

15/65

What can be done? (3)

● Equivalence checking
● Instance of formal verification
● Vertically: check that

synthesis/place/route preserves
behaviour

Have seen something
similar in HLS:

co-simulation is used
to check conistency
of C and RTL design

16/65

What can be done? (3)

● Equivalence checking
● Instance of formal verification
● Vertically: check that

synthesis/place/route preserves
behaviour

● Horizontally: check that modifications of
a component preserve behaviour

17/65

What can be done? (3)

● Equivalence checking
● Instance of formal verification
● Vertically: check that

synthesis/place/route preserves
behaviour

● Horizontally: check that modifications of
a component preserve behaviour

Used when manually
fixing/tuning the output

of synthesis

18/65

What can be done? (3)

● Equivalence checking
● Instance of formal verification
● Vertically: check that

synthesis/place/route preserves
behaviour

● Horizontally: check that modifications of
a component preserve behaviour

● Both are extremely important in
industry

19/65

20/65

Formal Functional Verification

Verification/
Bug Finding

Correct
Proof that design
satisfies property

Incorrect
Counterexample
showing property
violation

Inconclusive

Design

Specification/
Property

22/65

 Time-line: Methods in
Hardware Verification

Explicit-state model checking1980

Symbolic model checking1992

Bounded model checking1999

Analysis using abstraction1996

Counterexample-guided abstraction
refinement

2000

Craig interpolation-based refinement2003

...
Incremental induction (IC3/PDR)2011

k-induction2000

23/65

Examples 1

24/65

Observers/Monitors

● A module ReqM containing the asserted
properties of a module M

● ReqM instantiates M

● ReqM has the same inputs as M

● Outputs of M become local wires in ReqM

25/65

Observers/Monitors (2)

module Max(input [7:0] a,
 input [7:0] b,
 output [7:0] m,
 input clk);
 assign m = a > b ? a : b;
endmodule

module ReqMax(input [7:0] a,
 input [7:0] b,
 input clk);
 wire [7:0] m;
 Max max(a, b, m, clk);
 assert property (m == a || m == b);
 always @(posedge clk) begin
 assert (m >= a && m >= b);
 end
endmodule

26/65

The EBMC Tool

● A verification tool for Verilog designs
● Bounded model checking
● k-induction
● Symbolic model checking

● Partial support for SystemVerilog
assertions

● http://www.cprover.org/ebmc/

● Web interface:
http://logicrunch.it.uu.se:4096/~wv/ebmc/

27/65

The EBMC Tool

● A verification tool for Verilog designs
● Bounded model checking
● k-induction
● Symbolic model checking

● Partial support for SystemVerilog
assertions

● http://www.cprover.org/ebmc/

● Web interface:
http://logicrunch.it.uu.se:4096/~wv/ebmc/

We will mostly
focus on this!

http://www.cprover.org/ebmc/
http://logicrunch.it.uu.se:4096/~wv/ebmc/

28/65

What does “SUCCESS” mean?

● Intuitively:
A mathematical proof has been
found that given properties cannot be
violated
(but only up to the specified bound)

● Different from testing and simulation:
● All possible inputs and scenarios have

been considered
● However: the assumption is made that

compiler/synthesis/hardware are
correct

http://www.cprover.org/ebmc/
http://logicrunch.it.uu.se:4096/~wv/ebmc/

29/65

What does “FAILURE” mean?

● For some inputs, an assertion violation
can occur within the specified bounds

30/65

BMC vs k-Induction

● Bounded Model Checking only analyses
system up to a certain bound

● Here, k first cycles

● k-Induction tries to verify properties for
any depth

● But sometimes fails, and will then
return UNKNOWN

● More about both methods later

31/65

SystemVerilog Assertions

● assert: can be used in behavioural
blocks, assert properties in specific
cycles

● assert property: continuously assert
some property
(“concurrent assertion”)

● assume property: continuously
assume some property

● https://www.design-reuse.com/articles/10907/using-systemverilog-assertions-in-rtl-code.html

32/65

Difference between
assume and assert?

● assume: what does a module assume
about its environment?

● assert: which properties is a module
supposed to satisfy?

https://www.design-reuse.com/articles/10907/using-systemverilog-assertions-in-rtl-code.html

33/65

Examples 2

34/65

Temporal requirements

● Examples so far are on the
propositional level

● Interesting requirements often contain
temporal aspects; their statements
span multiple cycles of system
execution

● SystemVerilog has temporal operators;
more general stuff can be encoded

35/65

Examples 3

36/65

Temporal SystemVerilog Assertions

● A |=> B
● Similar as implication |->, but evaluate

B in the next cycle
● “non-overlapping”

● ##<n> A
● Evaluate A n cycles in the future
● (only partially supported by EBMC)
● A |=> B is the same as A |-> ##1 B

● (assertions are always tied to a clock!)

37/65

More General Patterns of
Temporal Reasoning

● “X has happened”

● “X never happens for more than Y
consecutive cycles”

● “Since X happened, Y has been true”

38/65

Safety vs. Liveness

● Different classes of requirements
● Safety:

● “Something bad never happens.”

● Liveness:
● “Eventually, something good

happens.”

● Looking into the past, we can only
express safety properties!

● (But bounded liveness can be done)

39/65

MultiStateSwitch

40/65

Properties

● R1: On1 and On2 are never true at the
same time

● R2: If On2 is true, then On1 has been
true sometime in the past

● R3: If On2 is true and the button is not
released, On2 stays true

41/65

Rigorous Design

● Requirements are first formulated as
text (in, say, English)

● Textual requirements are translated to
formal expressions

● Formal requirements are put in an
observer or monitor
(similar to a test bench or stimulus)

● Correctness of design is checked using
testing or model checking

42/65

From Text to Assertions

● Textual requirements often use patterns
with commonly understood meaning

● But: text is not always unambiguous;
writing good/precise requirements can
be difficult

43/65

Common English patterns

English Logic SystemVerilog
(similar for C)

A and B
A but B

A & B A && B

A if B
A when B
A whenever B

... ...

if A, then B
A implies B
A forces B

only if A, B
B only if A

A precisely when B
A if and only if B

A or B
either A or B

A or B

Ambiguous;
to clarify, write
“either A or B”

or
“A or B, or both”

44/65

Common English patterns

English Logic SystemVerilog
(similar for C)

A and B
A but B

A & B A && B

A if B
A when B
A whenever B

B => A B |-> A
!B || A

if A, then B
A implies B
A forces B

A => B A |-> B

only if A, B
B only if A

B => A B |-> A

A precisely when B
A if and only if B

A <=> B A == B

A or B
either A or B

A (+) B
(exclusive or)

A != B

A or B A v B
(logical or)

A || B

Ambiguous;
to clarify, write
“either A or B”

or
“A or B, or both”

45/65

Lab 3: Implementing & Verifying a
Door Lock

46/65

Main techniques of EBMC

● Bounded model checking
● Constraint solving to detect error

traces/counterexamples
● Internally uses a SAT solver
● Standard technique when designing

hardware

● k-Induction
● Strong form of mathematical induction
● Prove that requirements hold

47/65

Bounded model checking

● Idea: search for bugs in
programs/systems up to some depth;
but otherwise reason fully precisely

● Tailored to showing reachability
(e.g., finding bugs), not so much
unreachability

● The workhorse of formal hardware
verification

BMC Problem
Decide whether an error can be reached within the first
k execution steps of a program/system.

48/65

49/65

ETAPS Test of Time Award 2017ETAPS Test of Time Award 2017
(Awarded in the Uppsala Castle)(Awarded in the Uppsala Castle)

50/65

Bounded model checking

● Every Verilog design can be
represented as a Boolean
circuit/equation

● E.g.: module Counter(output reg [15:0] c,
 input clk);
 initial c = 0;
 always @(posedge clk) c = c + 1;
endmodule

51/65

Bounded model checking (2)

● We can duplicate the circuits to
generate counterexamples for
properties

● Let's say, we try to prove for the
counter that
 “c is always less than 10”
(does not hold)

52/65

Bounded model checking (3)

● Generate k copies of the circuit:

53/65

Bounded model checking (4)

● Check whether new circuits imply
property:

● A SAT solver can check this quickly …
and produce a counterexample

54/65

Bounded model checking (5)

● Bounded model checking can often
show very quickly that some
requirement does not hold

● What if a requirement holds?
● Second technique in EBMC: k-induction

55/65

What is k-induction?

56/65

Imagine Fibonacci numbers …

57/65

Let's prove that
all Fibonacci numbers

are non-negative:

58/65

Proof using standard induction

● To show
we prove:

● Base case:
● Step case:

59/65

Proof using standard induction

● To show
we prove:

● Base case:
● Step case:

● Does not work for Fibonacci numbers

60/65

Induction with two base cases
(2-induction)

● To show
we can also prove:

● Two base cases:

● “Simpler” step case:

● Works for Fibonacci numbers!

61/65

k-Induction

● Generalises 2-induction to k base cases
● Can be used to verify

properties/requirements P of
sequential circuits!

● Base case: prove that P holds in cycles
0, 1, 2, …, (k-1)

● Step case: assume that P holds in
cycle i, i+1, i+2, …, i+k-1, then prove
that P also holds in cycle i+k

62/65

Non-inductive properties

● For some properties P, it can happen
that step case fails, even though P
always holds → P is not inductive

● E.g., is not inductive for k=1
(but for k=2)

● Some properties are not inductive for
any k!

63/65

What to do in case of
non-inductive properties?

● Method 1: strengthen the property P
● verify not only P, but a stronger

property P & Q

● Method 2: make the program to be
verified more defensive

● handle some cases that cannot actually
occur
→ EBMC might not be able to detect
that the cases cannot occur

64/65

Exercise: back to the Traffic lights

System of two traffic lights, govering a
junction of two (one-way) streets. In
the default case, traffic light 1 is
green, traffic light 2 is red. When a car
is detected at traffic light 2 (the
carSensor input), the system switches
traffic light 1 to red, light 2 to green,
waits some amount of time, and then
switches back to the default situation.

carSensor

65/65

Some Traffic light Properties

● For each traffic light, no red and green
at the same time

● Some signal is always shown
● It cannot happen that the two traffic

light are green at the same time

66/65

Further reading

● A. Biere, A. Cimatti, E. M. Clarke, and Y.
Zhu, 1999: “Symbolic Model Checking
without BDDs”

● Sheeran, Singh, Stålmark, 2000:
“Checking Safety Properties Using
Induction and a SAT-Solver”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	page8 (1)
	page8 (2)
	page8 (3)
	page8 (4)
	Slide 12
	page10 (1)
	page10 (2)
	page10 (3)
	page10 (4)
	page10 (5)
	page10 (6)
	Slide 19
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	page18 (1)
	page18 (2)
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	page49 (1)
	page49 (2)
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

