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Guest lecture

Mahdad Davari:
Custom Silicon Solutions at 
Ericsson

Wednesday May 6th, 10:15 – 12:00
(usual Zoom Meeting)
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The projects

● Hardware is on the way to you, 
probably you will get it sometime this 
week. Let us know if you have not 
received it by May 13!

● Each package contains a return 
envelope, which you can use after the 
course to send back the boards

● We will introduce & start the project 
next week
(email with more information to come)
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Outline of this lecture

● Functional Verification, test benches
● SystemVerilog assertions
● Automated assertion checking: EBMC

● Lab 3

● Bounded Model Checking
● k-induction
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Verifying Designs is Important ...

● Hardware is created that takes care of 
possibly critical functions

● In particular in Embedded Systems

● Mistakes can be expensive
● Intel’s FDIV bug: ~1/2 billion $

(needed to recall defective processors)

● Rule of thumb: ~70% of development 
time is spent with verification
(same for hardware as for software)
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What can be done?

● Testing + Simulation (~90% of effort)
● Hand-written test benches that exercise 

interesting scenarios
As done in the labs!
(standard, but not very scalable)

● Constrained-random simulation
Randomly generate inputs, but only 
those satisfying given constraints
(standard in industry)
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You have already seen this!

● In Vivado/Verilog:
Test benches written in Verilog
(often using unsynthesizable code)

● In Vivado HLS:
Test benches written in C

● In Chisel:
Test benches written in Scala
(also using random testing)
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Test data is defined.
In Constrained-Random
Simulation, represented

by contraints and
input distributions
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Outputs are as expected?
→ Data checkers

Protocols are followed?
→ Protocol checkers

Test data is defined.
In Constrained-Random
Simulation, represented

by contraints and
input distributions
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Outputs are as expected?
→ Data checkers

Protocols are followed?
→ Protocol checkers

Code coverage/
Toggle coverage/
Branch coverage/

Functional coverage

Test data is defined.
In Constrained-Random
Simulation, represented

by contraints and
input distributions
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What can be done? (2)

● Formal verification (~10% of effort)
● Statically analyse all possible 

behaviours
● Most rigorous way to develop systems
● Main bottleneck today:

needs properties/specifications:
What is a system supposed to do?

● Focus of this lecture
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What can be done? (3)

● Equivalence checking
● Instance of formal verification
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What can be done? (3)

● Equivalence checking
● Instance of formal verification
● Vertically: check that 

synthesis/place/route preserves 
behaviour
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What can be done? (3)

● Equivalence checking
● Instance of formal verification
● Vertically: check that 

synthesis/place/route preserves 
behaviour

Have seen something
similar in HLS:

co-simulation is used
to check conistency
of C and RTL design
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What can be done? (3)

● Equivalence checking
● Instance of formal verification
● Vertically: check that 

synthesis/place/route preserves 
behaviour

● Horizontally: check that modifications of 
a component preserve behaviour
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What can be done? (3)

● Equivalence checking
● Instance of formal verification
● Vertically: check that 

synthesis/place/route preserves 
behaviour

● Horizontally: check that modifications of 
a component preserve behaviour

Used when manually
fixing/tuning the output

of synthesis
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What can be done? (3)

● Equivalence checking
● Instance of formal verification
● Vertically: check that 

synthesis/place/route preserves 
behaviour

● Horizontally: check that modifications of 
a component preserve behaviour

● Both are extremely important in 
industry
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Formal Functional Verification

Verification/
Bug Finding

Correct
Proof that design
satisfies property

Incorrect
Counterexample
showing property
violation

Inconclusive

Design

Specification/
Property
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 Time-line: Methods in
Hardware Verification

Explicit-state model checking1980

Symbolic model checking1992

Bounded model checking1999

Analysis using abstraction1996

Counterexample-guided abstraction
refinement

2000

Craig interpolation-based refinement2003

...
Incremental induction (IC3/PDR)2011

k-induction2000
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Examples 1
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Observers/Monitors

● A module ReqM containing the asserted 
properties of a module M

● ReqM instantiates M

● ReqM has the same inputs as M

● Outputs of M become local wires in ReqM
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Observers/Monitors (2)

module Max(input [7:0] a,
           input [7:0] b,
           output [7:0] m,
           input clk);
  assign m = a > b ? a : b;
endmodule

module ReqMax(input [7:0] a,
              input [7:0] b,
              input clk);
  wire [7:0] m;
  Max max(a, b, m, clk);
  assert property (m == a || m == b);
  always @(posedge clk) begin
    assert (m >= a && m >= b);
  end
endmodule
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The EBMC Tool

● A verification tool for Verilog designs
● Bounded model checking
● k-induction
● Symbolic model checking

● Partial support for SystemVerilog 
assertions

● http://www.cprover.org/ebmc/

● Web interface:
http://logicrunch.it.uu.se:4096/~wv/ebmc/ 
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The EBMC Tool

● A verification tool for Verilog designs
● Bounded model checking
● k-induction
● Symbolic model checking

● Partial support for SystemVerilog 
assertions

● http://www.cprover.org/ebmc/

● Web interface:
http://logicrunch.it.uu.se:4096/~wv/ebmc/ 

We will mostly
focus on this!

http://www.cprover.org/ebmc/
http://logicrunch.it.uu.se:4096/~wv/ebmc/
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What does “SUCCESS” mean?

● Intuitively:
A mathematical proof has been 
found that given properties cannot be 
violated
(but only up to the specified bound)

● Different from testing and simulation:
● All possible inputs and scenarios have 

been considered
● However: the assumption is made that 

compiler/synthesis/hardware are 
correct

http://www.cprover.org/ebmc/
http://logicrunch.it.uu.se:4096/~wv/ebmc/
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What does “FAILURE” mean?

● For some inputs, an assertion violation 
can occur within the specified bounds



30/65

BMC vs k-Induction

● Bounded Model Checking only analyses 
system up to a certain bound

● Here, k first cycles

● k-Induction tries to verify properties for 
any depth

● But sometimes fails, and will then 
return UNKNOWN

● More about both methods later
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SystemVerilog Assertions

● assert: can be used in behavioural 
blocks, assert properties in specific 
cycles

● assert property: continuously assert 
some property
(“concurrent assertion”)

● assume property: continuously 
assume some property

● https://www.design-reuse.com/articles/10907/using-systemverilog-assertions-in-rtl-code.html 
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Difference between
assume and assert?

● assume: what does a module assume 
about its environment?

● assert: which properties is a module 
supposed to satisfy?

https://www.design-reuse.com/articles/10907/using-systemverilog-assertions-in-rtl-code.html
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Examples 2
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Temporal requirements

● Examples so far are on the 
propositional level

● Interesting requirements often contain 
temporal aspects; their statements 
span multiple cycles of system 
execution

● SystemVerilog has temporal operators; 
more general stuff can be encoded
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Examples 3
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Temporal SystemVerilog Assertions

● A |=> B
● Similar as implication |->, but evaluate 

B in the next cycle
● “non-overlapping”

● ##<n> A
● Evaluate A n cycles in the future
● (only partially supported by EBMC)
● A |=> B is the same as A |-> ##1 B

● (assertions are always tied to a clock!)
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More General Patterns of
Temporal Reasoning

● “X has happened”

● “X never happens for more than Y 
consecutive cycles”

● “Since X happened, Y has been true”
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Safety vs. Liveness

● Different classes of requirements
● Safety:

● “Something bad never happens.”

● Liveness:
● “Eventually, something good 

happens.”

● Looking into the past, we can only 
express safety properties!

● (But bounded liveness can be done)
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MultiStateSwitch
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Properties

● R1: On1 and On2 are never true at the 
same time

● R2: If On2 is true, then On1 has been 
true sometime in the past

● R3: If On2 is true and the button is not 
released, On2 stays true
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Rigorous Design

● Requirements are first formulated as 
text (in, say, English)

● Textual requirements are translated to 
formal expressions

● Formal requirements are put in an
observer or monitor
(similar to a test bench or stimulus)

● Correctness of design is checked using
testing or model checking
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From Text to Assertions

● Textual requirements often use patterns 
with commonly understood meaning

● But: text is not always unambiguous;
writing good/precise requirements can 
be difficult
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Common English patterns

English Logic SystemVerilog
(similar for C)

A and B
A but B

A & B A && B

A if B
A when B
A whenever B

... ...

if A, then B
A implies B
A forces B

only if A, B
B only if A

A precisely when B
A if and only if B

A or B
either A or B 

A or B

Ambiguous;
to clarify, write
“either A or B”

or
“A or B, or both”



44/65

Common English patterns

English Logic SystemVerilog
(similar for C)

A and B
A but B

A & B A && B

A if B
A when B
A whenever B

B => A B |-> A
!B || A

if A, then B
A implies B
A forces B

A => B A |-> B

only if A, B
B only if A

B => A B |-> A

A precisely when B
A if and only if B

A <=> B A == B

A or B
either A or B 

A (+) B
(exclusive or)

A != B

A or B A v B
(logical or)

A || B

Ambiguous;
to clarify, write
“either A or B”

or
“A or B, or both”
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Lab 3: Implementing & Verifying a 
Door Lock
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Main techniques of EBMC

● Bounded model checking
● Constraint solving to detect error 

traces/counterexamples
● Internally uses a SAT solver
● Standard technique when designing 

hardware

● k-Induction
● Strong form of mathematical induction
● Prove that requirements hold
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Bounded model checking

● Idea: search for bugs in 
programs/systems up to some depth; 
but otherwise reason fully precisely

● Tailored to showing reachability
(e.g., finding bugs), not so much 
unreachability

● The workhorse of formal hardware 
verification

BMC Problem
Decide whether an error can be reached within the first
k execution steps of a program/system.
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ETAPS Test of Time Award 2017ETAPS Test of Time Award 2017
(Awarded in the Uppsala Castle)(Awarded in the Uppsala Castle)
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Bounded model checking

● Every Verilog design can be 
represented as a Boolean 
circuit/equation

● E.g.: module Counter(output reg [15:0] c,
               input clk);
  initial c = 0;
  always @(posedge clk) c = c + 1;
endmodule



51/65

Bounded model checking (2)

● We can duplicate the circuits to 
generate counterexamples for 
properties

● Let's say, we try to prove for the 
counter that
       “c is always less than 10”
(does not hold)
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Bounded model checking (3)

● Generate k copies of the circuit:
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Bounded model checking (4)

● Check whether new circuits imply 
property:

● A SAT solver can check this quickly … 
and produce a counterexample
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Bounded model checking (5)

● Bounded model checking can often 
show very quickly that some 
requirement does not hold

● What if a requirement holds?
● Second technique in EBMC: k-induction
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What is k-induction?
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Imagine Fibonacci numbers …
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Let's prove that
all Fibonacci numbers

are non-negative:
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Proof using standard induction

● To show
we prove:

● Base case:
● Step case:
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Proof using standard induction

● To show
we prove:

● Base case:
● Step case:

● Does not work for Fibonacci numbers
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Induction with two base cases
(2-induction)

● To show
we can also prove:

● Two base cases:

● “Simpler” step case:

● Works for Fibonacci numbers!
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k-Induction

● Generalises 2-induction to k base cases
● Can be used to verify 

properties/requirements P of 
sequential circuits!

● Base case: prove that P holds in cycles 
0, 1, 2, …, (k-1)

● Step case: assume that P holds in 
cycle i, i+1, i+2, …, i+k-1, then prove 
that P also holds in cycle i+k
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Non-inductive properties

● For some properties P, it can happen 
that step case fails, even though P 
always holds → P is not inductive

● E.g.,                is not inductive for k=1
(but for k=2)

● Some properties are not inductive for 
any k!
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What to do in case of
non-inductive properties?

● Method 1: strengthen the property P
● verify not only P, but a stronger 

property P & Q

● Method 2: make the program to be 
verified more defensive

● handle some cases that cannot actually 
occur
→ EBMC might not be able to detect 
that the cases cannot occur
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Exercise: back to the Traffic lights

System of two traffic lights, govering a 
junction of two (one-way) streets. In 
the default case, traffic light 1 is 
green, traffic light 2 is red. When a car 
is detected at traffic light 2 (the 
carSensor input), the system switches 
traffic light 1 to red, light 2 to green, 
waits some amount of time, and then 
switches back to the default situation.

carSensor
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Some Traffic light Properties

● For each traffic light, no red and green 
at the same time

● Some signal is always shown
● It cannot happen that the two traffic 

light are green at the same time
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Further reading

● A. Biere, A. Cimatti, E. M. Clarke, and Y. 
Zhu, 1999: “Symbolic Model Checking 
without BDDs”

● Sheeran, Singh, Stålmark, 2000: 
“Checking Safety Properties Using 
Induction and a SAT-Solver”
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