
1DT109 - Accelerating systems with FPGAs
Formal verification

Riccardo De Masellis

Uppsala University

October 4, 2021

1 Introduction

2 What is formal verification

3 Hands-on

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 2/26

Why verification?

To have an hardware free of bugs

What is a bug?
How do you define “correct behaviour?”
(extensionally, intentionally?)

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 3/26

Why verification?

To have an hardware free of bugs

What is a bug?

How do you define “correct behaviour?”
(extensionally, intentionally?)

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 3/26

Why verification?

To have an hardware free of bugs

What is a bug?
How do you define “correct behaviour?”
(extensionally, intentionally?)

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 3/26

Specification using english

“This playground is forbidden to who: is shorter than 130cm or
younger than 8 years old, if alone;

or is shorter than 110cm or
younger than 6 years old if accompanied”.

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 4/26

Specification using english

“This playground is forbidden to who: is shorter than 130cm or
younger than 8 years old, if alone; or is shorter than 110cm or

younger than 6 years old if accompanied”.

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 4/26

Specification using english

“This playground is forbidden to who: is shorter than 130cm or
younger than 8 years old, if alone; or is shorter than 110cm or

younger than 6 years old if accompanied”.

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 4/26

Example: formal verification of a counter

Implement a synchronous counter that counts up to 4
with an enable signal.

Ambiguous!
Does the counter start from zero?
if enable=1 then next value is previous value +1, but
if enable ̸= 1 ? Shall we reset? Or next value is equal to
previous value?

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 5/26

Example: formal verification of a counter

Implement a synchronous counter that counts up to 4
with an enable signal.

Ambiguous!
Does the counter start from zero?
if enable=1 then next value is previous value +1, but
if enable ̸= 1 ? Shall we reset? Or next value is equal to
previous value?

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 5/26

Why FORMAL verification

(Un-formal) verification and testing are not exhaustive, in general:
hand-written test benches;
constrained random simulations.

Formal verification guarantees (more or less) absence of bugs, by:
having unambiguous properties/specifications;
analyzing all possible system behaviours.

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 6/26

Why FORMAL verification

(Un-formal) verification and testing are not exhaustive, in general:
hand-written test benches;
constrained random simulations.

Formal verification guarantees (more or less) absence of bugs, by:
having unambiguous properties/specifications;
analyzing all possible system behaviours.

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 6/26

Importance of HW verification

In certain cases, especially in Embedded Systems, we can have
critical components;
Fixing HW is more expensive than fixing SW (e.g., Intel’s bug).

Indeed, it was HW industry pushed the development of formal
verification techniques, which is nowadays always used (for HW).

Question

Is it possible to always guarantee that HW/SW is free of bugs
(theoretically/practically)?

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 7/26

Importance of HW verification

In certain cases, especially in Embedded Systems, we can have
critical components;
Fixing HW is more expensive than fixing SW (e.g., Intel’s bug).

Indeed, it was HW industry pushed the development of formal
verification techniques, which is nowadays always used (for HW).

Question

Is it possible to always guarantee that HW/SW is free of bugs
(theoretically/practically)?

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 7/26

Digression: the halting problem

The halting problem (proved by A. Turing, 1936)

There is no program halt(·, ·) such that given as input any program
P(·) and any input x , halt(R, x) returns 1 is R(x) terminates and 0
otherwise.

Proof intuition (informal) by contradiction.
Suppose halt exists.
Take the following program:

def R(x):
if halt(R, x) then loop forever;

now, if halt(R) is true (meaning: R terminates), then R loops
forever, contradiction;
therefore hypothesis on existence of halt is faulty.

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 8/26

Digression: the halting problem

The halting problem (proved by A. Turing, 1936)

There is no program halt(·, ·) such that given as input any program
P(·) and any input x , halt(R, x) returns 1 is R(x) terminates and 0
otherwise.

Proof intuition (informal) by contradiction.
Suppose halt exists.
Take the following program:

def R(x):
if halt(R, x) then loop forever;

now, if halt(R) is true (meaning: R terminates), then R loops
forever, contradiction;
therefore hypothesis on existence of halt is faulty.

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 8/26

Digression: the halting problem

The halting problem (proved by A. Turing, 1936)

There is no program halt(·, ·) such that given as input any program
P(·) and any input x , halt(R, x) returns 1 is R(x) terminates and 0
otherwise.

Proof intuition (informal) by contradiction.
Suppose halt exists.
Take the following program:

def R(x):
if halt(R, x) then loop forever;

now, if halt(R) is true (meaning: R terminates), then R loops
forever, contradiction;
therefore hypothesis on existence of halt is faulty.

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 8/26

Halting problem: in practice

All programs that runs on a machine have finite memory, therefore
finite inputs, thus in principle they could be formally verified.

Analyze extensively the behaviour of a program, where states are all
possible combination for values of variables.

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 9/26

Halting problem: in practice

All programs that runs on a machine have finite memory, therefore
finite inputs, thus in principle they could be formally verified.

Analyze extensively the behaviour of a program, where states are all
possible combination for values of variables.

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 9/26

1 Introduction

2 What is formal verification

3 Hands-on

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 10/26

What formal verification does

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 11/26

Some techniques

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 12/26

Explicit model checking, example

module coun t e r (
output [1 : 0] out , input enab le , input c l k) ;

reg [1 : 0] count ;
ass ign out = count ;

i n i t i a l count = 0 ;

always @(posedge c l k)
i f (enab l e)
count = count + 1 ;

endmodule

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 13/26

Explicit model checking, example cont’d

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 14/26

Bounded model checking, example, cont’d

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 15/26

How to express properties

In a formal language.

We will use (restricted) temporal logic, which main operators are:
always, in every state the property holds;
next, in the next state the property holds;
concatenation of n next, namely, after n steps a property hold.

Full temporal logics are more expressive:
until, something must hold until something else becomes true;
...

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 16/26

How to express properties

In a formal language.

We will use (restricted) temporal logic, which main operators are:
always, in every state the property holds;
next, in the next state the property holds;
concatenation of n next, namely, after n steps a property hold.

Full temporal logics are more expressive:
until, something must hold until something else becomes true;
...

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 16/26

Explicit model checking (intuition)

Each formula is some sort of “pattern”/automaton.

E.g., counter = 0 → next counter = 2

The algorithm checks if your model satisfies the pattern (by
graph algorithms or by automata-based reasoning).

And returns (ideally):
• true if all executions satisfy the properties or
• false, and a counterexample trace.

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 17/26

Explicit model checking (intuition)

Each formula is some sort of “pattern”/automaton.

E.g., counter = 0 → next counter = 2

The algorithm checks if your model satisfies the pattern (by
graph algorithms or by automata-based reasoning).

And returns (ideally):
• true if all executions satisfy the properties or
• false, and a counterexample trace.

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 17/26

Explicit model checking (intuition)

Each formula is some sort of “pattern”/automaton.

E.g., counter = 0 → next counter = 2

The algorithm checks if your model satisfies the pattern (by
graph algorithms or by automata-based reasoning).

And returns (ideally):
• true if all executions satisfy the properties or
• false, and a counterexample trace.

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 17/26

Bounded model checking (intuition)

Relations between states is
represented as a (constraint)
boolean formula
R(c , e, c ′, e ′):

(c = 0 ∧ e = 1 ↔ c ′ = 1) ∧ (c = 0 ∧ e = 0 ↔ c ′ = 0) ∧ . . .

We unfold R(c , e, c ′, e ′) a number of time equal to the bound
(makes use of 2 · 3 = 8 variables):

(c0 = 0 ∧ e0 = 1 ↔ c1 = 1) ∧ . . .
(c1 = 0 ∧ e1 = 1 ↔ c2 = 2) ∧ . . .

we add the property in conjunction and the initial condition:

¬(c0 = 0 ∧ c0 = 2) ∨ ¬(c1 = 0 ∧ c2 = 2) ∨ ¬(c2 = 0 ∧ c3 = 2) ∨ . . . ∧ c0 = 0

if sat, then the property does not hold (truth assignment is the
counterexample).

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 18/26

Bounded model checking (intuition)

Relations between states is
represented as a (constraint)
boolean formula
R(c , e, c ′, e ′):

(c = 0 ∧ e = 1 ↔ c ′ = 1) ∧ (c = 0 ∧ e = 0 ↔ c ′ = 0) ∧ . . .

We unfold R(c , e, c ′, e ′) a number of time equal to the bound
(makes use of 2 · 3 = 8 variables):

(c0 = 0 ∧ e0 = 1 ↔ c1 = 1) ∧ . . .
(c1 = 0 ∧ e1 = 1 ↔ c2 = 2) ∧ . . .

we add the property in conjunction and the initial condition:

¬(c0 = 0 ∧ c0 = 2) ∨ ¬(c1 = 0 ∧ c2 = 2) ∨ ¬(c2 = 0 ∧ c3 = 2) ∨ . . . ∧ c0 = 0

if sat, then the property does not hold (truth assignment is the
counterexample).

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 18/26

Differences between model checking techniques

Explicit-state model checking suffers of state-explosion
problem;
symbolic model checking alleviates the problem;
bounded model checking does not verify that all executions
satisfies the property, as only bounded-depth executions are
checked;
k-induction use mathematical induction to prove that all
executions satisfy the property (although not all properties are
inductive).

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 19/26

1 Introduction

2 What is formal verification

3 Hands-on

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 20/26

Language we will use: assert

Conjunction of Always formulas:

assert property(Φ) where Φ can be:

atomic formula, such as:

unlock, count < 4, ...

boolean combination of atomic formulas, e.g.,

count < 4 ∧ code ̸= 3′b000

(n-)next formulas:

code ̸= 3′b000 |=> count = 0

code ̸= 3′b000 |-> ##3 count = 0

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 21/26

Language we will use: assert

Conjunction of Always formulas:

assert property(Φ) where Φ can be:

atomic formula, such as:

unlock, count < 4, ...

boolean combination of atomic formulas, e.g.,

count < 4 ∧ code ̸= 3′b000

(n-)next formulas:

code ̸= 3′b000 |=> count = 0

code ̸= 3′b000 |-> ##3 count = 0

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 21/26

Language we will use: assert

Conjunction of Always formulas:

assert property(Φ) where Φ can be:

atomic formula, such as:

unlock, count < 4, ...

boolean combination of atomic formulas, e.g.,

count < 4 ∧ code ̸= 3′b000

(n-)next formulas:

code ̸= 3′b000 |=> count = 0

code ̸= 3′b000 |-> ##3 count = 0

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 21/26

Language we will use: assert

Conjunction of Always formulas:

assert property(Φ) where Φ can be:

atomic formula, such as:

unlock, count < 4, ...

boolean combination of atomic formulas, e.g.,

count < 4 ∧ code ̸= 3′b000

(n-)next formulas:

code ̸= 3′b000 |=> count = 0

code ̸= 3′b000 |-> ##3 count = 0

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 21/26

Language we will use: assume

asserts are properties we want to check (for every input);
assume are assumptions (on the inputs).

assume property implies assert property

assume property(enable = 0)
assert property(count |=> count)

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 22/26

Language we will use: assume

asserts are properties we want to check (for every input);
assume are assumptions (on the inputs).

assume property implies assert property

assume property(enable = 0)
assert property(count |=> count)

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 22/26

Model checking verilog code

Time is marked by the clock (combinatorial circuits are
instantaneous, as in behavioural simulation);
Inputs are selected by the model checker in all possible ways;
When a (or more) input(s) changes, a new “stable” state is
computed.

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 23/26

In practice

We will use the EBMC1 model checker2. It can perform bounded
model checking or incremental induction.

For each module M we want to formally verify, we write a
verification module ReqM which will have a set of assert properties
used to verify ReqM.

In EBMC you can choose between:
bounded model checking (and set the bound);
k-induction.

1http://www.cprover.org/ebmc/
2http://logicrunch.it.uu.se:4096/~wv/ebmc/

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 24/26

http://www.cprover.org/ebmc/
http://logicrunch.it.uu.se:4096/~wv/ebmc/

In practice

We will use the EBMC1 model checker2. It can perform bounded
model checking or incremental induction.

For each module M we want to formally verify, we write a
verification module ReqM which will have a set of assert properties
used to verify ReqM.

In EBMC you can choose between:
bounded model checking (and set the bound);
k-induction.

1http://www.cprover.org/ebmc/
2http://logicrunch.it.uu.se:4096/~wv/ebmc/

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 24/26

http://www.cprover.org/ebmc/
http://logicrunch.it.uu.se:4096/~wv/ebmc/

Example, counter

module coun t e r (
output [1 : 0] out , input enab le , input c l k) ;

. . .
endmodule

module counterReq (
input enab le , input c l k) ;

wire [1 : 0] out ;
c oun t e r our_count (out , enab l e , c l k) ;

assume p r o p e r t y (. . .)
a s s e r t p r o p e r t y (. . .)
a s s e r t p r o p e r t y (. . .)

endmodule

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 25/26

Suggestions

1 Most properties relate past values with new values: use
registers in the Req module to save the past values.

2 Avoid latches at all costs in the design!

| 1DT109 - Accelerating systems with FPGAs (Formal verification) 26/26

	Introduction
	What is formal verification
	Hands-on

