1DT109 - Accelerating systems with FPGAs Formal verification

Riccardo De Masellis

Uppsala University

October 4, 2021

1 Introduction

2 What is formal verification

3 Hands-on

Why verification?

To have an hardware free of bugs

Why verification?

To have an hardware free of bugs

■ What is a bug?

Why verification?

To have an hardware free of bugs

- What is a bug?
- How do you define "correct behaviour?" (extensionally, intentionally?)

Specification using english

"This playground is forbidden to who: is shorter than 130cm or younger than 8 years old, if alone;

Specification using english

"This playground is forbidden to who: is shorter than 130cm or younger than 8 years old, if alone; or is shorter than 110cm or younger than 6 years old if accompanied".

Specification using english

"This playground is forbidden to who: is shorter than 130cm or younger than 8 years old, if alone; or is shorter than 110cm or younger than 6 years old if accompanied".

Example: formal verification of a counter

Implement a synchronous counter that counts up to 4 with an enable signal.

Example: formal verification of a counter

Implement a synchronous counter that counts up to 4 with an enable signal.

Ambiguous!

- Does the counter start from zero?
- if enable=1 then next value is previous value +1, but
- if enable ≠ 1? Shall we reset? Or next value is equal to previous value?

Why FORMAL verification

(Un-formal) verification and testing are not exhaustive, in general:

- hand-written test benches;
- constrained random simulations.

Why FORMAL verification

(Un-formal) verification and testing are not exhaustive, in general:

- hand-written test benches;
- constrained random simulations.

Formal verification guarantees (more or less) absence of bugs, by:

- having unambiguous properties/specifications;
- analyzing all possible system behaviours.

Importance of HW verification

- In certain cases, especially in Embedded Systems, we can have critical components;
- Fixing HW is more expensive than fixing SW (e.g., Intel's bug).

Indeed, it was HW industry pushed the development of formal verification techniques, which is nowadays always used (for HW).

Importance of HW verification

- In certain cases, especially in Embedded Systems, we can have critical components;
- Fixing HW is more expensive than fixing SW (e.g., Intel's bug).

Indeed, it was HW industry pushed the development of formal verification techniques, which is nowadays always used (for HW).

Question

Is it possible to always guarantee that HW/SW is free of bugs (theoretically/practically)?

Digression: the halting problem

The halting problem (proved by A. Turing, 1936)

There is no program $halt(\cdot, \cdot)$ such that given as input any program $P(\cdot)$ and any input x, halt(R, x) returns 1 is R(x) terminates and 0 otherwise.

Digression: the halting problem

The halting problem (proved by A. Turing, 1936)

There is no program $halt(\cdot, \cdot)$ such that given as input any program $P(\cdot)$ and any input x, halt(R, x) returns 1 is R(x) terminates and 0 otherwise.

Proof intuition (informal) by contradiction.

- Suppose *halt* exists.
- Take the following program:

```
def R(x):
  if halt(R, x) then loop forever;
```

Digression: the halting problem

The halting problem (proved by A. Turing, 1936)

There is no program $halt(\cdot, \cdot)$ such that given as input any program $P(\cdot)$ and any input x, halt(R, x) returns 1 is R(x) terminates and 0 otherwise.

Proof intuition (informal) by contradiction.

- Suppose *halt* exists.
- Take the following program:

```
def R(x):
  if halt(R, x) then loop forever;
```

- now, if halt(R) is true (meaning: R terminates), then R loops forever, contradiction;
- therefore hypothesis on existence of *halt* is faulty.

Halting problem: in practice

All programs that runs on a machine have finite memory, therefore finite inputs, thus in principle they could be formally verified.

Halting problem: in practice

All programs that runs on a machine have finite memory, therefore finite inputs, thus in principle they could be formally verified.

Analyze extensively the behaviour of a program, where states are all possible combination for values of variables.

1 Introduction

2 What is formal verification

3 Hands-on

What formal verification does

Some techniques

1980	Explicit-state model checking
1992	Symbolic model checking
1996	Analysis using abstraction
1999	Bounded model checking
2000	<i>k</i> -induction
2000	Counterexample-guided abstraction refinement
2003	Craig interpolation-based refinement
2011	Incremental induction (IC3/PDR)

Explicit model checking, example

```
module counter(
 output [1:0] out, input enable, input clk);
  reg [1:0] count;
  assign out = count;
  initial count = 0;
  always @(posedge clk)
    if (enable)
     count = count + 1;
endmodule
```

Explicit model checking, example cont'd

Bounded model checking, example, cont'd

BOUND = 3

How to express properties

In a formal language.

We will use (restricted) temporal logic, which main operators are:

- always, in every state the property holds;
- next, in the next state the property holds;
- \blacksquare concatenation of n next, namely, after n steps a property hold.

How to express properties

In a formal language.

We will use (restricted) temporal logic, which main operators are:

- always, in every state the property holds;
- next, in the next state the property holds;
- \blacksquare concatenation of n next, namely, after n steps a property hold.

Full temporal logics are more expressive:

- until, something must hold until something else becomes true;
- **.**..

Explicit model checking (intuition)

■ Each formula is some sort of "pattern"/automaton.

E.g., counter =
$$0 \rightarrow next$$
 counter = 2

Explicit model checking (intuition)

■ Each formula is some sort of "pattern"/automaton.

E.g., counter =
$$0 \rightarrow next$$
 counter = 2

■ The algorithm checks if your model satisfies the pattern (by graph algorithms or by automata-based reasoning).

Explicit model checking (intuition)

■ Each formula is some sort of "pattern"/automaton.

E.g., counter =
$$0 \rightarrow next$$
 counter = 2

■ The algorithm checks if your model satisfies the pattern (by graph algorithms or by automata-based reasoning).

- And returns (ideally):
 - true if all executions satisfy the properties or
 - false, and a counterexample trace.

Bounded model checking (intuition)

Relations between states is represented as a (constraint) boolean formula R(c, e, c', e'):

$$(c = 0 \land e = 1 \leftrightarrow c' = 1) \land (c = 0 \land e = 0 \leftrightarrow c' = 0) \land \dots$$

Bounded model checking (intuition)

Relations between states is represented as a (constraint) boolean formula R(c, e, c', e'):

$$(c = 0 \land e = 1 \leftrightarrow c' = 1) \land (c = 0 \land e = 0 \leftrightarrow c' = 0) \land \dots$$

■ We unfold R(c, e, c', e') a number of time equal to the bound (makes use of $2 \cdot 3 = 8$ variables):

$$(c_0 = 0 \land e_0 = 1 \leftrightarrow c_1 = 1) \land \dots$$

$$(c_1 = 0 \land e_1 = 1 \leftrightarrow c_2 = 2) \land \dots$$

• we add the property in conjunction and the initial condition:

$$\neg (c_0 = 0 \land c_0 = 2) \lor \neg (c_1 = 0 \land c_2 = 2) \lor \neg (c_2 = 0 \land c_3 = 2) \lor \dots \land c_0 = 0$$

■ if sat, then the property does not hold (truth assignment is the counterexample).

Differences between model checking techniques

- Explicit-state model checking suffers of state-explosion problem;
- symbolic model checking alleviates the problem;
- bounded model checking does not verify that all executions satisfies the property, as only bounded-depth executions are checked;
- k-induction use mathematical induction to prove that all executions satisfy the property (although not all properties are inductive).

1 Introduction

2 What is formal verification

3 Hands-on

Conjunction of Always formulas:

assert property(Φ) where Φ can be:

Conjunction of Always formulas:

assert property(Φ) where Φ can be:

■ atomic formula, such as:

unlock, count < 4, ...

Conjunction of Always formulas:

assert property(Φ) where Φ can be:

■ atomic formula, such as:

unlock, count < 4, ...

■ boolean combination of atomic formulas, e.g.,

 $count < 4 \land code \neq 3'b000$

Conjunction of Always formulas:

assert property(
$$\Phi$$
) where Φ can be:

■ atomic formula, such as:

unlock, count
$$< 4, ...$$

■ boolean combination of atomic formulas, e.g.,

$$count < 4 \land code \neq 3'b000$$

■ (n-)next formulas:

$$code \neq 3'b000 \mid => count = 0$$

 $code \neq 3'b000 \mid -> \#\#3 count = 0$

- asserts are properties we want to check (for every input);
- assume are assumptions (on the inputs).

assume property implies assert property

- asserts are properties we want to check (for every input);
- assume are assumptions (on the inputs).

assume property implies assert property

assume property(enable = 0)
assert property(count |=> count)

Model checking verilog code

- Time is marked by the clock (combinatorial circuits are instantaneous, as in behavioural simulation);
- Inputs are selected by the model checker in all possible ways;
- When a (or more) input(s) changes, a new "stable" state is computed.

In practice

We will use the EBMC¹ model checker². It can perform bounded model checking or incremental induction.

¹http://www.cprover.org/ebmc/

²http://logicrunch.it.uu.se:4096/~wv/ebmc/

In practice

We will use the EBMC¹ model checker². It can perform bounded model checking or incremental induction.

For each module M we want to formally verify, we write a verification module ReqM which will have a set of assert properties used to verify ReqM.

In EBMC you can choose between:

- bounded model checking (and set the bound);
- k-induction.

¹http://www.cprover.org/ebmc/

²http://logicrunch.it.uu.se:4096/~wv/ebmc/

Example, counter

```
module counter(
  output [1:0] out, input enable, input clk);
endmodule
module counterReq(
        input enable, input clk);
 wire [1:0] out;
 counter our count(out, enable, clk);
 assume property (...)
 assert property (...)
 assert property (...)
 endmodule
```

Suggestions

- Most properties relate past values with new values: use registers in the Req module to save the past values.
- 2 Avoid latches at all costs in the design!