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• Objective:
 Minimizing signal delays of mapped designs

− First polynomial-time depth-optimal algorithm
• Signal delay:

 Delay in the LUTs
 Interconnection delay

• LUT placement is not known 
  Only LUT delay is considered
  Interconnection delay:

−  assumed to be the same for all signals

  The delay of a signal = the number of LUTs that the signal traverses on 
a path from input to output

 minimization of the depth of the resulting DAG

• Two Steps:
 Node labelling
 Node mapping

FlowMap
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Mapping for Area

• Optimizing for area vs. optimizing for delay
 Reducing LUTs (area) may increase delay

• Based on network flow problem

Area = 3
Delay = 3

Area = 4
Delay =2

4-LUTs



4

Network Flow Problem

• Input:
 A network with a single source (say, an oil field) and a 

single destination (say, a large refinery) 
 All of the pipes ultimately connected to them

• Problem:
 What switch settings will maximize the amount of oil 

flowing from source to destination?
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Network Flow Problem
• Assumptions:

 Pipes are of fixed capacity proportional to their size 
 Oil can flow in them only in the direction indicated
 Switches at each junction control how much of the oil 

goes in each direction.
 The system reaches a state of equilibrium (no matter 

how the switches are set)
− amount of oil flowing into the system become equal to 

the amount flowing out
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Network Flow Problem
• Goal:

 Maximize this amount of flow
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Network Flow Problem

• How can switch settings affect the total flow?

1. Suppose all switches are open.
−  Diagonal pipes are full

− ~ half of the input pipe capacity is used
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Network Flow Problem

• How can switch settings affect the total flow?

2. Suppose upward pipe is shut-off

− Substantial Increase in total flow into and out of the network.
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Graph Model of Network Flow

• Graph model:
 Weighted directed graph
 Nodes:

− Source (with no input edge)
− Sink (with no output edge)
− Pipe junctions

 Edges:
− Pipes
− Directions: oil flow
− Weights: 

− (a) pipe capacities
− (b) flow on each edge (≤ capacity)

− Flow in a node = Flow out of it
• Network flow problem:

 Maximize flow out of the output node
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Graph Model of Network Flow

• Graph model:
 Edges can be undirected:

− (x  y), capacity s, flow f  =
− (y  x), capacity -s, flow -f

2/5
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Ford-Fulkerson Method

• FF Algorithm:
 Start with a zero flow
 Try to increase flow repeatedly
 Repeat until no increase possible

−  Maximum flow found

2/5
0/5

0/3

0/2

0/6

0/4

 Increase flow along the path ADEBCF
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Ford-Fulkerson Method

 Increase flow along the path ABCDEF

2/5

2/2
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Ford-Fulkerson Method

 Increase flow along the path ABCF

2/2
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Ford-Fulkerson Method

 Increase flow along the path ABEF

• Condition to stop:
 At least one of the forward edges along the path 

becomes full or at least one of the backward edges 
along the path becomes empty
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Maxflow-Mincut Theorem

• Cut:
 Go through the network (from source to sink) and find 

the first full forward edge or empty backward edge on 
every path.

• Maxflow-Mincut Theorem:
 Whenever the cut flow equals the total flow, we know 

not only that the flow is maximal, but also that the cut 
is minimal.

− Count only the forward edges in cut.
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• FlowMap: a network flow-based method. 

• Basics of network flow:
• Given a network  N = (V, E) (a graph)

 Cut: a partition (X,Xb) of N with source s X and target t  Xb

 Node cut-size n(X,Xb) of a cut (X,Xb): # of nodes in X adjacent to 
some nodes in Xb

  K-feasible cut: iff n(X,Xb) ≤ K
 Edge cut-size e(X,Xb):  weighted sum of 

crossing edges

Basics of Network Flow

a

b c

d e

v

PIs
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 fanin cone Oν rooted at node ν: a sub-network consisting of ν and 
some of its predecessors, such that for any node u  Oν, there is 
a path from u to ν that lies entirely in Oν

 Label of a node t: the depth of the optimal LUT which implements t 
in an optimal mapping of the sub-graph Ct of N
− Ct is the cone at t.

 Height h(X,Xb) of a cut (X,Xb): the maximum label in X
 Volume vol(X,Xb): # of nodes in X (|X|)

Basics of Network Flow

a

b c

d e

v

PIs
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 Maximum fan-in cone Fv: The largest cone rooted 
at v (Largest Ov)
− Consisting of all the predecessors of v.

 MFFCv (Maximum fanout-free cone):
− For each node ν, there is a unique maximum fanout-free 

cone which contains every fanout-free cone rooted at ν.

 input(Cv):
− Set of distinct nodes outside of Oν supplying inputs to one 

or more gates in Oν.

Basics of Network Flow

a

b c

d e

v
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Basics of Network Flow

  Oν is K-feasible if |input(Oν)| ≤ K.

• Cut:
 partition (X,Xb) of the fanin cone Fν of ν such that Xb is a 

cone of ν

• Cutset of the cut:
 input(Xb) 

• K-feasible cut (K-cut):
  if Xb is a K-feasible cone

a

b c

d e

v

Fv

3-feasible 
cone Cv

PIs

[Chen04]

3-feasible 
cut
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Basics of Network Flow

• K-LUT:
  Xb is a K-LUT that implements ν with the inputs in the 

cutset.

• We use cuts, cutsets, cones, and LUTs interchangeably

• t-bounded Boolean network:
 if |input(ν)| ≤ t for each node ν
 For Flowmap, the input network must be 2-bounded

− Otherwise, it should be decomposed before Flowmap
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Basics of Network Flow: Example

a

b c

d e

v

3-feasible 
cone Cv

PIs

Delay of 2
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• Node labelling:
• Labels every node in a topological order
 Each node is processed after all its predecessors

− Label: minimum possible depth of the node in any mapping 
solution

 Dynamic Programming:
− Starting from PI nodes, compute node labels in 

topological order:

− Compute the label of a node based on labels of its 
predecessors

• Labels of PO nodes:
 Depth of the optimal mapping solution

FlowMap: Basic Approach
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FlowMap Algorithm
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FlowMap Algorithm
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1. Node labelling:
• Steps:

1. For a given node t, the cone Ct is transformed into a network Nt :
 Inserting a source node s whose output is connected to all inputs of 

Nt.

2. l(primary input) = 0
3. Other nodes’ labels:

FlowMap: Node Labelling

Network 
transformation
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FlowMap: LUT Mapping

• Lemma: 
 If p is the maximum label in input(t), then
l(t) = p               OR 
l(t) = p+1

• Algorithm:
 Check whether there is a K-feasible cut (X,Xb) of height p−1 in Nt.
 If yes, then 

− l(t)  p and the node t will be packed (in the second phase) in a 
common LUT with the nodes in X. 

 If no, then 
− the minimum height of the K-feasible cuts in Nt is p and
− Nt − {t} , {t} is such a cut. 
− l(t)  p + 1 and
− a new LUT will be used for t.

• New Problem:
 How to find out if a network has a K-feasible cut with a given 

height h.
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Network Collapsing

• Network Collapsing:
 collapses all the nodes in Nt with max-label = p 

together with t in a new node t’. 
• Lemma:

 if N’t has a K-feasible cut, Nt has a K-feasible cut 
of height p − 1

Network 
collapsing

Nt N’t
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Node Splitting

 Finding min height K-feasible cut in Nt is reduced to 
finding K-feasible cut in N’t

• Question:
 How to know if there is a K-feasible cut in N’t?

• Answer:
 Network flow algorithms 
 Problem:

− They use edge cut optimization

 Solution:
−  Node splitting
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Node Splitting

• Transform N’t to N’’t:

1. For each node v in N’t (except s and t’)

1. Introduce v1 and v2

2. Connect them by bridging edge (v1, v2)

2. s and t’ appear in N’’t too. 

1. For each (s, v), create a (s, v1)

2. For each (v, t’), create a (v2 ,t’)

3. For each (u, v) in N’t (u ≠ s and v ≠ t’),

1. Create (u2, v1)

2. Set capacity:
• 1 for bridging edges
  for non-bridging edges
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Node Splitting

Second
transformation
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Node Splitting

• N’t to N’’t transformation:

 Ensures that if a cut exists in N’’t with capacity < K, 
then no edge with infinite capacity will be a crossing 
one.

 Only bridging edges are crossing the cut
− A LUT may have fanout > 1

−  Min-cut in N’t may not work properly

• Lemma:
 if N’’t has a cut with cut size ≤ K, N’t has a K-feasible 

cut.
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Example
• Example:

 K = 3
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Example
 l(i) = 0 for all PIs
 p = 0
 Topological order: {a, b, c, d, e, f, g, h, i, j, k}

 Not possible to find a cut in N’’a with a cutsize 
smaller or equal to K = 3

−  Xb = {a}

− l(a) = p + 1 = 1.
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Example

• Node b and c: 
 Similar to the case for node a, 

• Node b:
 Xb = {b},

− l(b) = 1

• Node c:
 Xb = {c}

− l(c) = 1
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Example

• Node d:
 p = 1
 Max flow (min-cut) = 3
 Xb = {a, d}

 l(d) = p = 1
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Example

• Node e:
 Similar to a
 Xb = {e}

 l(e) = 1

• Node f:
 similar to d
 Xb = {c, f}
 l(f) = 1
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Example

• Node g:
 Xb = {c, g}
 l(g) = p = 1
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Example

• Node h:
 Xb = {a, d, h}

 l(h) = l(d) = 1
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Example

• Node i:
 N’’i does not contain a K-feasible cut.
 Xb = {i}
 l(i) = p + 1 = 2
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Example
• Node j:

 Only one K-feasible cut in N’’j 
 Its height is 1.
 Xb = {i, j}
 l(j) = p = 2
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Example
• Node k:

 Only one K-feasible cut in N’’k 
 Its height is 1.
 Xb = {i, k}
 l(k) = p = 2
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FlowMap Algorithm
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Example

• Labels and clusters 
 L = {h, j, k}
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Example

 Remove h from L
 h’ = K-LUT implementation of h
 Table: h’ contains {a, d, h}
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Example

 input(h’) contains three PI nodes
 We do not add PI nodes into L
  L = {j, k}
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Example
 Remove j from L
 Table: j’ contains {i, j}
 input(j’) = {e, b, f}
  L = {k}  {e, b, f} = {k, e, b, f}
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Example
 Remove k from L
 Table: k’ contains {i, k}
 input(k’) = {b, f, g}
  L = {e, b, f}  {b, f, g} = {e, b, f, g}
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Example
 Remove e from L
 Table: e’ contains {e}
 input(e’) = PI nodes
  L = {b, f, g}
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Example
 Remove b from L
 Table: b’ contains {b}
 input(b’) = PI nodes
  L = {f, g}
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Example
 Remove f from L
 Table: f’ contains {c, f}
 input(f’) = PI nodes
  L = {g}
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Example
 Remove g from L
 Table: g’ contains {c, g}
 input(g’) = PI nodes
  L = Ø
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Example

• 7 K-LUTs generated
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Example
• Max label = 2

  Max delay = 2
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TM Algorithms: Conclusion

• Area-optimal LUT mapping is NP-complete.
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Recent Work
• Integrated approaches:

 with retiming
 with synthesis and decomposition
 with clustering and placement

• More area reduction heuristics
• Power minimization techniques
• Area optimization while maintaining performance

 DAOmap [Chen04] guarantees optimal delay, reducing area 
significantly

• Mapping for FPGAs with heterogeneous resources:
 FPGAs with different LUT sizes

− Adaptive logic modules (ALMs) in Altera’s Stratix II can be configured to 
two 4-LUTs, one 5-LUT and one 3-LUT, and certain 6/7-LUTs.

− Xilinx Virtex II, Virtex 4, 5, 6 can implement LUTs with different input 
sizes.

• Mapping with embedded memory blocks (not so recent):
 Unused EMBs can be used to implement logic.

− Large multi-input multi-output LUTs



Optimality Study of TM Algorithms
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Potential Success of TM Algorithms

• Optimality study of LUT-based TM [Cong06]:
 LEKO examples:

− Logic synthesis Examples with Known Optimal
− Existing academic algorithms and commercial tools:

− Gap: 5% to 23% (average 15%)

 LEKU examples:
− Logic synthesis Examples with Known Upper bounds (on 

area)

− Average optimality gap of over 70X!
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