FPGA Technology Mapping Algorithms

FlowMap

FlowMap

- Objective:
 - Minimizing signal delays of mapped designs
 - First polynomial-time depth-optimal algorithm
- Signal delay:
 - Delay in the LUTs
 - Interconnection delay
- LUT placement is not known
 - ➤ → Only LUT delay is considered
 - ➤ → Interconnection delay:
 - assumed to be the same for all signals
 - ➤ The delay of a signal = the number of LUTs that the signal traverses on a path from input to output
 - minimization of the depth of the resulting DAG
- Two Steps:
 - Node labelling
 - Node mapping

Mapping for Area

- Optimizing for area vs. optimizing for delay
 - Reducing LUTs (area) may increase delay
- Based on network flow problem

Input:

- A network with a single source (say, an oil field) and a single destination (say, a large refinery)
- > All of the pipes ultimately connected to them

Problem:

What switch settings will maximize the amount of oil flowing from source to destination?

Assumptions:

- Pipes are of fixed capacity proportional to their size
- Oil can flow in them only in the direction indicated
- Switches at each junction control how much of the oil goes in each direction.
- The system reaches a state of equilibrium (no matter how the switches are set)
 - amount of oil flowing into the system become equal to the amount flowing out

- Goal:
 - Maximize this amount of flow

- How can switch settings affect the total flow?
 - 1. Suppose all switches are open.
 - → Diagonal pipes are full

- ~ half of the input pipe capacity is used

- How can switch settings affect the total flow?
 - 2. Suppose upward pipe is shut-off

- Substantial Increase in total flow into and out of the network.

Graph Model of Network Flow

- Graph model:
 - Weighted directed graph
 - ➤ Nodes:
 - Source (with no input edge)
 - Sink (with no output edge)
 - Pipe junctions
 - Edges:
 - Pipes
 - Directions: oil flow
 - Weights:
 - (a) pipe capacities
 - (b) flow on each edge (≤ capacity)
 - Flow in a node = Flow out of it
- Network flow problem:
 - Maximize flow out of the output node

Graph Model of Network Flow

- Graph model:
 - Edges can be undirected:
 - $-(x \rightarrow y)$, capacity s, flow f =
 - $-(y \rightarrow x)$, capacity -s, flow -f

- FF Algorithm:
 - Start with a zero flow
 - Try to increase flow repeatedly
 - Repeat until no increase possible
 - → Maximum flow found

Increase flow along the path ADEBCF

Increase flow along the path ABCDEF

Increase flow along the path ABCF

Increase flow along the path ABEF

- Condition to stop:
 - At least one of the forward edges along the path becomes full or at least one of the backward edges along the path becomes empty

Maxflow-Mincut Theorem

Cut:

➤ Go through the network (from source to sink) and find the first full forward edge or empty backward edge on every path.

Maxflow-Mincut Theorem:

- ➤ Whenever the cut flow equals the total flow, we know not only that the flow is maximal, but also that the cut is minimal.
 - Count only the forward edges in cut.

- FlowMap: a network flow-based method.
- Basics of network flow:
- Given a network N = (V, E) (a graph)
 - \triangleright Cut: a partition (X,X_b) of N with source $s \in X$ and target $t \in X_b$
 - Node cut-size $n(X,X_b)$ of a cut (X,X_b) : # of nodes in X adjacent to some nodes in X_b
 - ightharpoonup K-feasible cut: iff $n(X,X_b) \leq K$
 - Edge cut-size $e(X,X_b)$: weighted sum of crossing edges

- \triangleright fanin cone O_{ν} rooted at node ν : a sub-network consisting of ν and some of its predecessors, such that for any node $u \in O_{\nu}$, there is a path from u to v that lies entirely in O_{ν}
- \triangleright Label of a node t: the depth of the optimal LUT which implements t in an optimal mapping of the sub-graph C_t of N
 - C_t is the cone at t.
- \rightarrow Height $h(X,X_b)$ of a cut (X,X_b) : the maximum label in X
- \triangleright Volume *vol(X,X_b):* # of nodes in X (|X|)

- Maximum fan-in cone F_v : The largest cone rooted at v (Largest O_v)
 - Consisting of all the predecessors of *v.*
- MFFCv (Maximum fanout-free cone):
 - For each node ν , there is a *unique* maximum fanout-free cone which contains every fanout-free cone rooted at ν .
- \geq input(C_{v}):

- Set of distinct nodes outside of O_{ν} supplying inputs to one or more gates in O_{ν} .

- \times \rightarrow O_v is K-feasible if $|\text{input}(O_v)| \leq K$.
- Cut:
 - Partition (X,X_b) of the fanin cone F_v of v such that X_b is a cone of v
- Cutset of the cut:
 - \triangleright input(X_b)
- *K*-feasible cut (*K*-cut):
 - \triangleright if X_b is a K-feasible cone

3-feasible cut

- *K*-LUT:
 - \succ X_b is a K-LUT that implements ν with the inputs in the cutset.
- We use cuts, cutsets, cones, and LUTs interchangeably
- t-bounded Boolean network:
 - ightharpoonup if $|input(v)| \le t$ for each node v
 - For Flowmap, the input network must be 2-bounded
 - Otherwise, it should be decomposed before Flowmap

Basics of Network Flow: Example

FlowMap: Basic Approach

- Node labelling:
 - Labels every node in a topological order
 - → Each node is processed after all its predecessors
 - Label: minimum possible depth of the node in any mapping solution
 - Dynamic Programming:
 - Starting from PI nodes, compute node labels in topological order:
 - Compute the label of a node based on labels of its predecessors
- Labels of PO nodes:
 - Depth of the optimal mapping solution

```
algorithm FlowMap
    /* phase 1: labeling network */
    for each PI node v do
      l(v) := 0;
    T := list of non-PI nodes in topological order;
    while T is not empty do
      remove the first node t from T;
      construct the network N_t;
      let p = \max\{l(u) : u \in input(t)\};
      transform N_t into N_t by collapsing all nodes in N_t with label p into t;
      transform N'_t into N''_t as follows:
         split every node in \{x : x \in N'_t, x \neq s, x \neq t\} into two
            and connect them with a bridging edge of capacity 1;
         assign all non-bridging edges capacity ∞;
      compute a cut (X'', X'') in N''_{v} s.t. e(X'', X'') \le K
         using the augmenting path algorithm;
      if (X'', X'') is not found in N''_t then
        X_t := \{t\}; \quad l(t) := p + 1
      else
         induce a cut (X, \overline{X}) in N_t from the cut (X'', \overline{X}'') in N''_t;
         X_t := X; \quad l(t) := p
      endif
    endwhile;
    /* phase 2: generate K-LUTs */
```

FlowMap Algorithm

```
/* phase 2: generate K-LUTs */

L := list of PO nodes;

while L contains non-PI nodes do

take a non-PI node v from L;

generate a K-LUT v' to implement the function of v

such that input (v') = input (X̄<sub>v</sub>);

L := (L − {v}) ∪ input (v')

endwhile

end-algorithm;
```

FlowMap: Node Labelling

Node labelling:

- Steps:
 - 1. For a given node t, the cone C_t is transformed into a network N_t :
 - Inserting a source node s whose output is connected to all inputs of N_t .
 - 2. l(primary input) = 0
 - 3. Other nodes' labels:

Network transformation

FlowMap: LUT Mapping

Lemma:

 \triangleright If p is the maximum label in input(t), then

$$l(t) = p$$
 OR
$$l(t) = p+1$$

Algorithm:

- \triangleright Check whether there is a K-feasible cut (X,X_b) of height p-1 in N_t .
- If yes, then
 - *l*(*t*) ← *p* and the node *t* will be packed (in the second phase) in a common LUT with the nodes in *X*.
- If no, then
 - the minimum height of the K-feasible cuts in N_t is p and
 - $-N_t \{t\}$, $\{t\}$ is such a cut.
 - $-l(t) \leftarrow p + 1$ and
 - a new LUT will be used for t.

New Problem:

How to find out if a network has a K-feasible cut with a given height h.

Network Collapsing

- Network Collapsing:
 - \triangleright collapses all the nodes in N_t with max-label = p together with t in a new node t.
- Lemma:
 - ightharpoonup if N'_t has a K-feasible cut, N_t has a K-feasible cut of height p-1

Node Splitting

Finding min height K-feasible cut in N_t is reduced to finding K-feasible cut in N'_t

Question:

 \triangleright How to know if there is a K-feasible cut in N'_t ?

Answer:

- Network flow algorithms
- > Problem:
 - They use edge cut optimization
- > Solution:
 - − → Node splitting

Node Splitting

- Transform N'_t to N''_t :
 - 1. For each node v in N'_t (except s and t')
 - 1. Introduce v_1 and v_2
 - 2. Connect them by bridging edge (v_1, v_2)
 - 2. s and t' appear in N''_t too.
 - 1. For each (s, v), create a (s, v_1)
 - 2. For each (v, t'), create a (v_2, t')
 - 3. For each (u, v) in N'_t $(u \neq s \text{ and } v \neq t')$,
 - 1. Create (u_2, v_1)
 - 2. Set capacity:
 - 1 for bridging edges
 - $\forall \infty$ for non-bridging edges

Node Splitting

- *N'_t* to *N''_t* transformation:
 - Ensures that if a cut exists in N"_t with capacity < K, then no edge with infinite capacity will be a crossing one.
 - Only bridging edges are crossing the cut
 - A LUT may have fanout > 1
 - \rightarrow Min-cut in N'_t may not work properly
- Lemma:
 - ightharpoonup if N''_t has a cut with cut size $\leq K$, N'_t has a K-feasible cut.

• Example:

$$> K = 3$$

- > I(i) = 0 for all PIs
- > p = 0
- Topological order: {a, b, c, d, e, f, g, h, i, j, k}

Not possible to find a cut in N''_a with a cutsize smaller or equal to K=3

$$- \rightarrow X_b = \{a\}$$

$$-I(a) = p + 1 = 1$$

- Node *b* and *c*:
 - \triangleright Similar to the case for node a,
- Node b:

$$X_b = \{b\},\ - I(b) = 1$$

Node c:

$$X_b = \{c\}$$
 $- I(c) = 1$

• Node *d*:

- > p = 1
- ➤ Max flow (min-cut) = 3
- $\succ X_b = \{a, d\}$
- > I(d) = p = 1

• Node *e*:

- Similar to a
- $> X_b = \{e\}$
- $\geq l(e) = 1$
- Node *f*:
 - > similar to d
 - $\triangleright X_b = \{c, f\}$
 - > I(f) = 1

• Node *g*:

$$\triangleright X_b = \{c, g\}$$

$$\geq l(g) = p = 1$$

• Node *h*:

- $\triangleright X_b = \{a, d, h\}$
- > I(h) = I(d) = 1

• Node *i*:

- \triangleright N''_i does not contain a K-feasible cut.
- $> X_b = \{i\}$
- > I(i) = p + 1 = 2

• Node *j*:

- \triangleright Only one K-feasible cut in N_i^n
- Its height is 1.
- $\succ X_b = \{i, j\}$
- > I(j) = p = 2

Node k:

- \triangleright Only one K-feasible cut in N''_k
- Its height is 1.
- $> X_b = \{i, k\}$
- > I(k) = p = 2

FlowMap Algorithm

```
/* phase 2: generate K-LUTs */

L := list of PO nodes;

while L contains non-PI nodes do

take a non-PI node v from L;

generate a K-LUT v' to implement the function of v

such that input (v') = input (X̄<sub>v</sub>);

L := (L − {v}) ∪ input (v')

endwhile

end-algorithm;
```

Labels and clusters →

$$\triangleright$$
 L = {h, j, k}

Node	Label	Clustering
\overline{a}	1	$\{a\}$
b	1	$\{b\}$
c	1	$\{c\}$
d	1	$\{a,d\}$
e	1	$\{e\}$
f	1	$\{c,f\}$
g	1	$\{c,g\}$
h	1	$\{a,d,h\}$
i	2	$\{i\}$
j	2	$\{i,j\}$
k	2	$\{i,k\}$

- > Remove *h* from *L*
- h' = K-LUT implementation of h'
- \triangleright Table: h' contains $\{a, d, h\}$

Node	Label	Clustering
\overline{a}	1	$\{a\}$
b	1	$\{b\}$
c	1	$\{c\}$
d	1	$\{a,d\}$
e	1	$\{e\}$
f	1	$\{c,f\}$
g	1	$\{c,g\}$
h	1	$\{a,d,h\}$
i	2	$\{i\}$
j	2	$\{i,j\}$
k	2	$\{i,k\}$

- \rightarrow input(h') contains three PI nodes
- > We do not add PI nodes into L
- \rightarrow L = {j, k}

Node

- Remove j from L
- \triangleright Table: j' contains $\{i, j\}$
- \triangleright input(j') = {e, b, f}
- $ightharpoonup
 ightharpoonup L = \{k\} \cup \{e, b, f\} = \{k, e, b, f\}$

a	1	$\{a\}$
b	1	$\{b\}$
c	1	$\{c\}$
d	1	$\{a,d\}$
e	1	$\{e\}$
f	1	$\{c,f\}$
g	1	$\{c,g\}$
h	1	$\{a,d,h\}$
i	2	$\{i\}$
j	2	$\{i,j\}$
k	2	$\{i,k\}$

Label

Clustering

- ➤ Remove *k* from *L*
- \triangleright Table: k' contains $\{i, k\}$
- \triangleright input(k') = {b, f, g}
- \rightarrow L = {e, b, f} \cup {b, f, g} = {e, b, f, g}

Node	Label	Clustering
\overline{a}	1	$\{a\}$
b	1	$\{b\}$
c	1	$\{c\}$
d	1	$\{a,d\}$
e	1	$\{e\}$
f	1	$\{c,f\}$
g	1	$\{c,g\}$
h	1	$\{a,d,h\}$
i	2	$\{i\}$
j	2	$\{i,j\}$
k	2	$\{i,k\}$

- > Remove e from L
- Table: e' contains {e}
- > input(e') = PI nodes
- \rightarrow L = {b, f, g}

Node	Label	Clustering
\overline{a}	1	<i>{a}</i>
b	1	$\{b\}$
c	1	$\{c\}$
d	1	$\{a,d\}$
e	1	$\{e\}$
f	1	$\{c,f\}$
g	1	$\{c,g\}$
h	1	$\{a,d,h\}$
i	2	$\{i\}$
j	2	$\{i,j\}$
k	2	$\{i,k\}$

- Remove *b* from *L*
- \triangleright Table: b' contains $\{b\}$
- > input(b') = PI nodes
- \rightarrow L = {f, g}

Node	Label	Clustering
\overline{a}	1	<i>{a}</i>
b	1	$\{b\}$
c	1	$\{c\}$
d	1	$\{a,d\}$
e	1	$\{e\}$
f	1	$\{c,f\}$
g	1	$\{c,g\}$
h	1	$\{a,d,h\}$
i	2	$\{i\}$
j	2	$\{i,j\}$
k	2	$\{i,k\}$

- Remove f from L
- \triangleright Table: f' contains $\{c, f\}$
- \geq input(f') = PI nodes
- \rightarrow $L = \{g\}$

Node	Label	Clustering
\overline{a}	1	<i>{a}</i>
b	1	$\{b\}$
c	1	$\{c\}$
d	1	$\{a,d\}$
e	1	$\{e\}$
f	1	$\{c,f\}$
g	1	$\{c,g\}$
h	1	$\{a,d,h\}$
i	2	$\{i\}$
j	2	$\{i,j\}$
k	2	$\{i,k\}$

- \triangleright Remove g from L
- \triangleright Table: g' contains $\{c, g\}$
- \geq input(g') = PI nodes
- $\rightarrow L = \emptyset$

Node	Label	Clustering
\overline{a}	1	<i>{a}</i>
b	1	$\{b\}$
c	1	$\{c\}$
d	1	$\{a,d\}$
e	1	$\{e\}$
f	1	$\{c,f\}$
g	1	$\{c,g\}$
h	1	$\{a,d,h\}$
i	2	$\{i\}$
j	2	$\{i,j\}$
k	2	$\{i,k\}$

• 7 K-LUTs generated

Node	Label	Clustering
\overline{a}	1	$\{a\}$
b	1	$\{b\}$
c	1	$\{c\}$
d	1	$\{a,d\}$
e	1	$\{e\}$
f	1	$\{c,f\}$
g	1	$\{c,g\}$
h	1	$\{a,d,h\}$
i	2	$\{i\}$
j	2	$\{i,j\}$
k	2	$\{i,k\}$

Root	Elements
h	$\{a,d,h\}$
j	$\{i,j\}$
k	$\{i,k\}$
e	$\{e\}$
b	$\{b\}$
f	$\{c,f\}$
g	$\{c,g\}$

- Max label = 2
 - \rightarrow Max delay = 2

Root	Element
\overline{h}	$\{a,d,h\}$
j	$\{i,j\}$
k	$\{i,k\}$
e	$\{e\}$
b	$\{b\}$
f	$\{c,f\}$
g	$\{c,g\}$

TM Algorithms: Conclusion

Area-optimal LUT mapping is NP-complete.

Recent Work

- Integrated approaches:
 - with retiming
 - with synthesis and decomposition
 - with clustering and placement
- More area reduction heuristics
- Power minimization techniques
- Area optimization while maintaining performance
 - DAOmap [Chen04] guarantees optimal delay, reducing area significantly
- Mapping for FPGAs with heterogeneous resources:
 - > FPGAs with different LUT sizes
 - Adaptive logic modules (ALMs) in Altera's Stratix II can be configured to two 4-LUTs, one 5-LUT and one 3-LUT, and certain 6/7-LUTs.
 - Xilinx Virtex II, Virtex 4, 5, 6 can implement LUTs with different input sizes.
- Mapping with embedded memory blocks (not so recent):
 - Unused EMBs can be used to implement logic.
 - Large multi-input multi-output LUTs

Potential Success of TM Algorithms

- Optimality study of LUT-based TM [Cong06]:
 - LEKO examples:
 - Logic synthesis Examples with Known Optimal
 - Existing academic algorithms and commercial tools:
 - Gap: 5% to 23% (average 15%)
 - LEKU examples:
 - Logic synthesis Examples with Known Upper bounds (on area)
 - Average optimality gap of over 70X!

References

- ➤ [Bobda07] C. Bobda, "Introduction to Reconfigurable Computing: Architectures, Algorithms and Applications," Springer, 2007.
- ➤ [Chen06] D. Chen, J. Cong and P. Pan, "FPGA Design Automation: A Survey," Foundations and Trends in Electronic Design Automation, Vol. 1, No. 3 (2006) 195–330.
- Francis90] R. Francis, J. Rose, K. Chung, "Chortle: A Technology Mapping Program for Lookup Table-Based Field-Programmable Gate Arrays," DAC 1990.
- Francis91] R. Francis, J. Rose, Z. Vranesic, "Chortle-crf: Fast technology mapping for lookup table-based FPGAs," DAC, 1991.
- ➤ [Cong94] J. Cong and Y. Ding, "Flowmap: an optimal technology mapping algorithm for delay optimization in lookup-table based fpga designs," IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 13, no. 1, pp. 1–12, 1994.
- [Cong06] J. Cong, K. Minkovich, "Optimality Study of Logic Synthesis for LUT-Based FPGAs," FPGA 2006.

- Reconfigurable Computing, lecture slides, lect05ece697f.ppt
- ➤ [Lockwood06] J. Lockwood, "Switching Theory," Lecture slides, Washington University, http://www.arl.wustl.edu/~lockwood/class/cse460/2006.
- ➤ [Chen04] D. Chen and J. Cong, "DAOmap: a depth-optimal area optimization mapping algorithm for FPGA designs," In *Int'l Conf. Computer Aided Design*, 2004.
- ➤ [Sedgewick83] R. Sedgewick, Algorithms, Addison-Wesley, 1983. {CD36}
- ➤ [Lim08] S. Lim, "Practical Problems in VLSI Physical Design Automation," Springer, 2008.