
FPGA Technology Mapping Algorithms

FlowMap

2

• Objective:
 Minimizing signal delays of mapped designs

− First polynomial-time depth-optimal algorithm
• Signal delay:

 Delay in the LUTs
 Interconnection delay

• LUT placement is not known
  Only LUT delay is considered
  Interconnection delay:

− assumed to be the same for all signals

  The delay of a signal = the number of LUTs that the signal traverses on
a path from input to output

 minimization of the depth of the resulting DAG

• Two Steps:
 Node labelling
 Node mapping

FlowMap

3

Mapping for Area

• Optimizing for area vs. optimizing for delay
 Reducing LUTs (area) may increase delay

• Based on network flow problem

Area = 3
Delay = 3

Area = 4
Delay =2

4-LUTs

4

Network Flow Problem

• Input:
 A network with a single source (say, an oil field) and a

single destination (say, a large refinery)
 All of the pipes ultimately connected to them

• Problem:
 What switch settings will maximize the amount of oil

flowing from source to destination?

5

Network Flow Problem
• Assumptions:

 Pipes are of fixed capacity proportional to their size
 Oil can flow in them only in the direction indicated
 Switches at each junction control how much of the oil

goes in each direction.
 The system reaches a state of equilibrium (no matter

how the switches are set)
− amount of oil flowing into the system become equal to

the amount flowing out

6

Network Flow Problem
• Goal:

 Maximize this amount of flow

7

Network Flow Problem

• How can switch settings affect the total flow?

1. Suppose all switches are open.
−  Diagonal pipes are full

− ~ half of the input pipe capacity is used

8

Network Flow Problem

• How can switch settings affect the total flow?

2. Suppose upward pipe is shut-off

− Substantial Increase in total flow into and out of the network.

9

Graph Model of Network Flow

• Graph model:
 Weighted directed graph
 Nodes:

− Source (with no input edge)
− Sink (with no output edge)
− Pipe junctions

 Edges:
− Pipes
− Directions: oil flow
− Weights:

− (a) pipe capacities
− (b) flow on each edge (≤ capacity)

− Flow in a node = Flow out of it
• Network flow problem:

 Maximize flow out of the output node

10

Graph Model of Network Flow

• Graph model:
 Edges can be undirected:

− (x  y), capacity s, flow f =
− (y  x), capacity -s, flow -f

2/5

11

Ford-Fulkerson Method

• FF Algorithm:
 Start with a zero flow
 Try to increase flow repeatedly
 Repeat until no increase possible

−  Maximum flow found

2/5
0/5

0/3

0/2

0/6

0/4

 Increase flow along the path ADEBCF

12

Ford-Fulkerson Method

 Increase flow along the path ABCDEF

2/5

2/2

13

Ford-Fulkerson Method

 Increase flow along the path ABCF

2/2

14

Ford-Fulkerson Method

 Increase flow along the path ABEF

• Condition to stop:
 At least one of the forward edges along the path

becomes full or at least one of the backward edges
along the path becomes empty

15

Maxflow-Mincut Theorem

• Cut:
 Go through the network (from source to sink) and find

the first full forward edge or empty backward edge on
every path.

• Maxflow-Mincut Theorem:
 Whenever the cut flow equals the total flow, we know

not only that the flow is maximal, but also that the cut
is minimal.

− Count only the forward edges in cut.

16

• FlowMap: a network flow-based method.

• Basics of network flow:
• Given a network N = (V, E) (a graph)

 Cut: a partition (X,Xb) of N with source s X and target t  Xb

 Node cut-size n(X,Xb) of a cut (X,Xb): # of nodes in X adjacent to
some nodes in Xb

 K-feasible cut: iff n(X,Xb) ≤ K
 Edge cut-size e(X,Xb): weighted sum of

crossing edges

Basics of Network Flow

a

b c

d e

v

PIs

17

 fanin cone Oν rooted at node ν: a sub-network consisting of ν and
some of its predecessors, such that for any node u  Oν, there is
a path from u to ν that lies entirely in Oν

 Label of a node t: the depth of the optimal LUT which implements t
in an optimal mapping of the sub-graph Ct of N
− Ct is the cone at t.

 Height h(X,Xb) of a cut (X,Xb): the maximum label in X
 Volume vol(X,Xb): # of nodes in X (|X|)

Basics of Network Flow

a

b c

d e

v

PIs

18

 Maximum fan-in cone Fv: The largest cone rooted
at v (Largest Ov)
− Consisting of all the predecessors of v.

 MFFCv (Maximum fanout-free cone):
− For each node ν, there is a unique maximum fanout-free

cone which contains every fanout-free cone rooted at ν.

 input(Cv):
− Set of distinct nodes outside of Oν supplying inputs to one

or more gates in Oν.

Basics of Network Flow

a

b c

d e

v

19

Basics of Network Flow

  Oν is K-feasible if |input(Oν)| ≤ K.

• Cut:
 partition (X,Xb) of the fanin cone Fν of ν such that Xb is a

cone of ν

• Cutset of the cut:
 input(Xb)

• K-feasible cut (K-cut):
 if Xb is a K-feasible cone

a

b c

d e

v

Fv

3-feasible
cone Cv

PIs

[Chen04]

3-feasible
cut

20

Basics of Network Flow

• K-LUT:
 Xb is a K-LUT that implements ν with the inputs in the

cutset.

• We use cuts, cutsets, cones, and LUTs interchangeably

• t-bounded Boolean network:
 if |input(ν)| ≤ t for each node ν
 For Flowmap, the input network must be 2-bounded

− Otherwise, it should be decomposed before Flowmap

21

Basics of Network Flow: Example

a

b c

d e

v

3-feasible
cone Cv

PIs

Delay of 2

22

• Node labelling:
• Labels every node in a topological order
 Each node is processed after all its predecessors

− Label: minimum possible depth of the node in any mapping
solution

 Dynamic Programming:
− Starting from PI nodes, compute node labels in

topological order:

− Compute the label of a node based on labels of its
predecessors

• Labels of PO nodes:
 Depth of the optimal mapping solution

FlowMap: Basic Approach

23

FlowMap Algorithm

24

FlowMap Algorithm

25

1. Node labelling:
• Steps:

1. For a given node t, the cone Ct is transformed into a network Nt :
 Inserting a source node s whose output is connected to all inputs of

Nt.

2. l(primary input) = 0
3. Other nodes’ labels:

FlowMap: Node Labelling

Network
transformation

27

FlowMap: LUT Mapping

• Lemma:
 If p is the maximum label in input(t), then
l(t) = p OR
l(t) = p+1

• Algorithm:
 Check whether there is a K-feasible cut (X,Xb) of height p−1 in Nt.
 If yes, then

− l(t)  p and the node t will be packed (in the second phase) in a
common LUT with the nodes in X.

 If no, then
− the minimum height of the K-feasible cuts in Nt is p and
− Nt − {t} , {t} is such a cut.
− l(t)  p + 1 and
− a new LUT will be used for t.

• New Problem:
 How to find out if a network has a K-feasible cut with a given

height h.

28

Network Collapsing

• Network Collapsing:
 collapses all the nodes in Nt with max-label = p

together with t in a new node t’.
• Lemma:

 if N’t has a K-feasible cut, Nt has a K-feasible cut
of height p − 1

Network
collapsing

Nt N’t

29

Node Splitting

 Finding min height K-feasible cut in Nt is reduced to
finding K-feasible cut in N’t

• Question:
 How to know if there is a K-feasible cut in N’t?

• Answer:
 Network flow algorithms
 Problem:

− They use edge cut optimization

 Solution:
−  Node splitting

30

Node Splitting

• Transform N’t to N’’t:

1. For each node v in N’t (except s and t’)

1. Introduce v1 and v2

2. Connect them by bridging edge (v1, v2)

2. s and t’ appear in N’’t too.

1. For each (s, v), create a (s, v1)

2. For each (v, t’), create a (v2 ,t’)

3. For each (u, v) in N’t (u ≠ s and v ≠ t’),

1. Create (u2, v1)

2. Set capacity:
• 1 for bridging edges
  for non-bridging edges

31

Node Splitting

Second
transformation

32

Node Splitting

• N’t to N’’t transformation:

 Ensures that if a cut exists in N’’t with capacity < K,
then no edge with infinite capacity will be a crossing
one.

 Only bridging edges are crossing the cut
− A LUT may have fanout > 1

−  Min-cut in N’t may not work properly

• Lemma:
 if N’’t has a cut with cut size ≤ K, N’t has a K-feasible

cut.

33

Example
• Example:

 K = 3

34

Example
 l(i) = 0 for all PIs
 p = 0
 Topological order: {a, b, c, d, e, f, g, h, i, j, k}

 Not possible to find a cut in N’’a with a cutsize
smaller or equal to K = 3

−  Xb = {a}

− l(a) = p + 1 = 1.

35

Example

• Node b and c:
 Similar to the case for node a,

• Node b:
 Xb = {b},

− l(b) = 1

• Node c:
 Xb = {c}

− l(c) = 1

36

Example

• Node d:
 p = 1
 Max flow (min-cut) = 3
 Xb = {a, d}

 l(d) = p = 1

37

Example

• Node e:
 Similar to a
 Xb = {e}

 l(e) = 1

• Node f:
 similar to d
 Xb = {c, f}
 l(f) = 1

38

Example

• Node g:
 Xb = {c, g}
 l(g) = p = 1

39

Example

• Node h:
 Xb = {a, d, h}

 l(h) = l(d) = 1

40

Example

• Node i:
 N’’i does not contain a K-feasible cut.
 Xb = {i}
 l(i) = p + 1 = 2

41

Example
• Node j:

 Only one K-feasible cut in N’’j
 Its height is 1.
 Xb = {i, j}
 l(j) = p = 2

42

Example
• Node k:

 Only one K-feasible cut in N’’k
 Its height is 1.
 Xb = {i, k}
 l(k) = p = 2

43

FlowMap Algorithm

44

Example

• Labels and clusters 
 L = {h, j, k}

45

Example

 Remove h from L
 h’ = K-LUT implementation of h
 Table: h’ contains {a, d, h}

46

Example

 input(h’) contains three PI nodes
 We do not add PI nodes into L
  L = {j, k}

47

Example
 Remove j from L
 Table: j’ contains {i, j}
 input(j’) = {e, b, f}
  L = {k}  {e, b, f} = {k, e, b, f}

48

Example
 Remove k from L
 Table: k’ contains {i, k}
 input(k’) = {b, f, g}
  L = {e, b, f}  {b, f, g} = {e, b, f, g}

49

Example
 Remove e from L
 Table: e’ contains {e}
 input(e’) = PI nodes
  L = {b, f, g}

50

Example
 Remove b from L
 Table: b’ contains {b}
 input(b’) = PI nodes
  L = {f, g}

51

Example
 Remove f from L
 Table: f’ contains {c, f}
 input(f’) = PI nodes
  L = {g}

52

Example
 Remove g from L
 Table: g’ contains {c, g}
 input(g’) = PI nodes
  L = Ø

53

Example

• 7 K-LUTs generated

54

Example
• Max label = 2

  Max delay = 2

55

TM Algorithms: Conclusion

• Area-optimal LUT mapping is NP-complete.

56

Recent Work
• Integrated approaches:

 with retiming
 with synthesis and decomposition
 with clustering and placement

• More area reduction heuristics
• Power minimization techniques
• Area optimization while maintaining performance

 DAOmap [Chen04] guarantees optimal delay, reducing area
significantly

• Mapping for FPGAs with heterogeneous resources:
 FPGAs with different LUT sizes

− Adaptive logic modules (ALMs) in Altera’s Stratix II can be configured to
two 4-LUTs, one 5-LUT and one 3-LUT, and certain 6/7-LUTs.

− Xilinx Virtex II, Virtex 4, 5, 6 can implement LUTs with different input
sizes.

• Mapping with embedded memory blocks (not so recent):
 Unused EMBs can be used to implement logic.

− Large multi-input multi-output LUTs

Optimality Study of TM Algorithms

58

Potential Success of TM Algorithms

• Optimality study of LUT-based TM [Cong06]:
 LEKO examples:

− Logic synthesis Examples with Known Optimal
− Existing academic algorithms and commercial tools:

− Gap: 5% to 23% (average 15%)

 LEKU examples:
− Logic synthesis Examples with Known Upper bounds (on

area)

− Average optimality gap of over 70X!

59

References

 [Bobda07] C. Bobda, “Introduction to Reconfigurable Computing:
Architectures, Algorithms and Applications,” Springer, 2007.

 [Chen06] D. Chen, J. Cong and P. Pan, “FPGA Design Automation:
A Survey,” Foundations and Trends in Electronic Design
Automation, Vol. 1, No. 3 (2006) 195–330.

 [Francis90] R. Francis, J. Rose, K. Chung, “Chortle: A Technology
Mapping Program for Lookup Table-Based Field-Programmable
Gate Arrays,” DAC 1990.

 [Francis91] R. Francis, J. Rose, Z. Vranesic, “Chortle-crf: Fast
technology mapping for lookup table-based FPGAs,” DAC, 1991.

 [Cong94] J. Cong and Y. Ding, “Flowmap: an optimal technology
mapping algorithm for delay optimization in lookup-table based
fpga designs,” IEEE Trans. on CAD of Integrated Circuits and
Systems, vol. 13, no. 1, pp. 1–12, 1994.

 [Cong06] J. Cong, K. Minkovich, “Optimality Study of Logic
Synthesis for LUT-Based FPGAs,” FPGA 2006.

60

 Reconfigurable Computing, lecture slides, lect05-
ece697f.ppt

 [Lockwood06] J. Lockwood, “Switching Theory,”
Lecture slides, Washington University,
http://www.arl.wustl.edu/~lockwood/class/cse460/
2006.

 [Chen04] D. Chen and J. Cong, “DAOmap: a depth-
optimal area optimization mapping algorithm for FPGA
designs,” In Int’l Conf. Computer Aided Design, 2004.

 [Sedgewick83] R. Sedgewick, Algorithms, Addison-
Wesley, 1983. {CD36}

 [Lim08] S. Lim, “Practical Problems in VLSI Physical
Design Automation,” Springer, 2008.

	FPGA Technology Mapping Algorithms
	FlowMap
	Mapping for Area
	Network Flow Problem
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Graph Model of Network Flow
	Slide 10
	Ford-Fulkerson Method
	Slide 12
	Slide 13
	Slide 14
	Maxflow-Mincut Theorem
	Basics of Network Flow
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Basics of Network Flow: Example
	FlowMap: Basic Approach
	FlowMap Algorithm
	Slide 24
	FlowMap: Node Labelling
	FlowMap: LUT Mapping
	Network Collapsing
	Node Splitting
	Slide 30
	Slide 31
	Slide 32
	Example
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	TM Algorithms: Conclusion
	Recent Work
	Optimality Study of TM Algorithms
	Potential Success of TM Algorithms
	References
	Slide 60

