
 1

Accelerating Systems with Programmable Logic Components – 1DT109

2022 – HT1-HT2

Lab 2 – Designing an AXI Accelerator for

Matrix Multiplication
Overview

In this lab you will be designing an AXI accelerator for matrix multiplication for the

Xilinx Zynq device. As in the previous lab, we will only be using the simulator.

Tools
Xilinx Vivado HLx Edition 2018.3

Intended Learning outcomes

• Understanding the design of a custom IP (Intellectual Property).
• Understanding the basics of accelerator design.
• Understanding the AXI bus handshake logic.

Assessment

• Your design needs to produce the expected result using the provided test

bench. In order to not get overloaded, we recommend that you start early,
make good use the office hours.

• Both students must understand all parts of the solution by themselves (this will
be checked).

• You are welcome to send us your code, even the lab is mainly for teaching

purpose instread of a group task.

1 What to Accelerate

We consider matrix multiplication for acceleration, a basic mathematical operation

that is important in a wide range of applications and algorithms (e.g., in scientific
computing or machine learning). Matrix multiplication is a good candidate for
acceleration, since the matrices needed in practice are often huge, and processing them

can be a bottleneck on a general purpose computing platform (e.g., PC or server).
Given the matrix multiplication as follows,

	
	
	
	
	
	

a11			a12			a13			a14				
a21			a22			a23			a24				
a31			a32			a33			a34				
a41			a42			a43			a44				
			

b11			b12			b13			b14				
b21			b22			b23			b24				
b31			b32			b33			b34				
b41			b42			b43			b44				
			

r11			r12			r13			r14				
r21			r22			r23			r24				
r31			r32			r33			r34				
r41			r42			r43			r44				
			

	 	 	

 2

an unoptimized sequential implementation of matrix multiplication is:

1. for (row = 0; row < dim; ++row)

2. for (col = 0; col < dim; ++col) {
3. matR[row][col] = 0;

4. for (tmp = 0; tmp < dim; ++tmp)
5. matR[row][col] = matA[row][tmp] * matB[tmp][col] + matR[row][col]

6. }

2 System Overview

Below you can see the overall architecture for a very simple accelerator system.

PS: Processing System (ARM Cores)

PL: Programmable Logic, i.e., the FPGA fabric
AXI-Lite: Simple AXI bus used by the processor

to configure the IPs (memory-mapped)
AXI: High performance AXI bus (memory-

mapped)
AXI-Stream: Streaming bus (address-less)
HP: High Performance port, used by the Direct

Memory Access (DMA) controller to access the
off-chip memory

In this lab, we will not be designing the whole system. Instead we will only deal with
designing and testing the accelerator (shown as “Accel. (PL)” in Figure 1), with a focus

on the AXI bus communication. We will provide a design skeleton and all you need to
do is to fulfil the TODO list in the skeleton code. However, it is very important to see
the bigger picture (such as what components the accelerator has and their working

detail), in order to understand the part that you will be working on. The following
sections will guide you through some key components in the accelerator design.

Figure 1 Zynq with accelerator

 3

3 Accelerator micro-architecture

The micro-architecture of the accelerator you will be working on (shown as “Accel.
(PL)” in Figure 1) is given in Figure 2.

• sel: used by the PS to select matA or matB before loading the matrix to the

accelerator (memory-mapped via the axi-lite config bus)
o “0” for selecting matA
o “1” for selecting matB

• start: used by the PS to start the accelerator after loading the matrices

(memory-mapped via the axi-lite config bus)

• AGU: Address Generator Unit, used to generate addresses to:

o Fill-in the input matrices matA and matB via axi-stream bus interface
o Read operands from matA and matB during MAC

o Write the result to matR
o Sending the result to PS via axi-stream bus interface

• matX: input and output matrices implemented as dual-port block RAMs

• MAC: used to implement the datapath for the multiplication and

accumulation
The provided skeleton file “mat_mul.v” implements this architecture, however,

leaving the FSM in the “AGU” empty, for which you need to fill in. As you can see from
the figure, the “AGU” FSM should implement the logic for reading from and writing to

the AXI Stream bus (bus handshaking), as well as the controlling signals (e.g., addresses)
for controlling datapath components (matA, matB, matR, MAC) to launch the actual

operations for matrix multiplication.

Figure 2 Accelerator micro-architecture

AXI-Lite
Slave

Address Generator Unit
(control unit)

AXI
Stream
Slave

AXI
Stream
Master

matA
(datapath)

matB
(datapath)

MAC
(datapath)

matR
(datapath)

Wrapper

start sel

addrA

addrB

addrR

Accelerator

data_out

data_in

×

+

s_tready

s_tvalid, s_tlast

m_tready

m_tvalid, m_tlast

 4

The AGU FSM can have the following states:

• S_IDLE: The idle state. All controlling signals reset to default.

• S_LOAD_A: Load matrix A from the AXI stream bus. This state should

generate controlling signals for the AXI stream slave interface in Figure 2 as
well as addresses for matA during matrix loading.
o Why should we generate address on the slave-side when loading

matries using AXI-stream interface?

• S_LOAD_B: Load matrix B from the AXI stream bus. Again, this state should

generate controlling signals for the AXI stream slave interface in Figure 2 as
well as address for matB during matrix loading.

o The AXI-stream is a streaming bus. In order to fully use that property,
what kind of addresses should you generate in state S_LOAD_A and

S_LOAD_B?

• S_CALCULATE: Launch matrix calculation. Read all operands loaded in matA

and matB and write results to matR.
o What kind of addresses should you generate in S_CALCULATE?

• S_OUTPUT: Output matR to the AXI stream master interface in Figure 2 after

the whole matrix multiplication is done.
o Why should we output matR only after the whole matrix multiplication

is done? Why should not we output partial results in matR on the fly?

4 AXI-Stream State Machine

We will be using the following handshaking protocol to receive data from and send
data to the AXI Stream bus, which should be implemented by the FSM inside the AGU.

Figure 3 AXI stream state machine

 5

You can read more on the AXI stream interface on Page 45 of the Xilinx guide
“ug761_axi_reference_guide.pdf”.

5 Address Generation for MAC

The AGU generates the addresses (the indices shown below) for reading from the
input matrices and writing to the output matrix.

1. for (row = 0; row < dim; ++row)

2. for (col = 0; col < dim; ++col) {

3. matR[row][col] = 0;
4. for (tmp = 0; tmp < dim; ++tmp)
5. matR[row][col] = matA[row][tmp] * matB[tmp][col] + matR[row][col]

6. }

N.B. In hardware, multi-dimentional matrices are always stored as 1-D arrays in
memory. We thus must generate the addresses to index the 2-D matrices using 1-D
addresses during matrix multiplication (i.e., from matA[row][tmp] to matA[addr]). One
way to achieve this is to design an address generation logic as shown in Figure 4.
Assume that matA and matB are both dim*dim in size with iterators “row”, “col”, and
“temp” ranging in [0, dim-1]. The address generation logic for matA is given below.

Figure 4 Address converting logic for matA

Observe the inputs and output of the logic and design the address generation logic

for matB and matR in the code skeleton.

6 Multiplier and Accumulator (MAC) Unit

In the lab we use the Multiplier and Accumulator (MAC) unit to implement Line 5

in the matrix multiplication algorithm, which is one of the datapath components of the
accelerator. A MAC has the following hardware structure. Understand its behaviour and
implement it in the skeleton code. Think about why we need 3 registers in the MAC

unit.

×	

+	

dim

row

temp

addsA

 6

Figure 5 MAC unit structure

7 Your Task

You are required to design the accelerator based on the afore-mentioned
components. Moreover, you should make sure that all the components are correctly

verified and synchronized. This is achieved by designing synthesizable logic and
ensuring correct timing between all the components using the testbench we ship.

You can open the design files in Vivado HLx and complete the design according to

the instructions in this manual (you will need to complete all the TODO parts in the
skeleton files). We suggest not to change anything in the parts not annotated with a

“TODO” comment, as only filling in these parts should be enough.
Finally, you need to benchmark your design. A necessary but not sufficient

condition to pass this lab is that the provided test bench should produce the output
"HW/SW result match!" when simulated to completion. It might not be sufficient, as
there might be some edge cases which produce this output even though the design is

not complete. It is your responsibility to check that the output is correct (e.g. through
the simulator signals or writing the output to a file) even if you receive this message.

To make debugging easier, you can reduce the matrix sizes by modifying the
MATRIX_DIMENSION_LOG_2 value. The sizes need to be changed both in the test

bench and in the accelerator code.
You are welcome to design your own test bench as well. Regardless, in addition to

your solution, if asked you should be able to explain to the TAs:
● the test bench file that you are using (either your own or the provided one),
● how to interpret the results.

×	

+	

 7

8 Opening the Skeleton Files in Vivado

After downloading the zip file and extracting it in a folder, open the project for the
accelerator by opening in Vivado the following file:

lab2_matmul/Lab2_MatMul/Lab2_MatMul.xpr.
When the project is opened, double-click on mat_mul.v in the Sources pane, and

complete the TODO parts (you can of course find and edit the same file under

lab2_matmul/src/hdl using your preferred editor as well).

After completing your modifications, you should test your design by simulating it.

The test bench is provided in the file mat_mul_tb.v.

N.B. If launching the behavioural simulation fails, make sure that the library
“xil_defaultlib” is selected in the “Source File Properties” pane for all source files (see

the figure on the next page).

 8

